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Abstract 

Many important processes of great technological importance can be modeled by properly designed 

charged systems. A common example is photocatalysis, where photon absorption promotes 

electrons from the valence band of a semiconductor photocatalyst to its conduction band, 

generating electrons and holes. These electron-hole pairs are usually involved in separate 

reactions, in a macroscopic distance from each other. To avoid the quick recombination of the 

carriers in models of limited size, it is best to simulate the behavior of the hole and the electron in 

separate, charged systems. 

Solid surfaces are most commonly investigated using slab models, which are created by applying 

periodic boundary conditions to a layer of gas or vacuum phase over a bulk-like region, resulting 

in a solid surface model that is periodic in two dimensions and is repeated artificially in the third. 

For studying charged models under periodic boundary conditions, a compensating background 

charge is also required to avoid the divergence of the Coulomb energy. The slab models are very 

convenient from a computational point of view. However, the interactions between the periodic 

images of the localized charge and between the localized charge and its neutralizing background 

can cause significant errors in the total energy, which somehow need to be accounted for. 

Komsa and Pasquarello have proposed a correction scheme that is suitable for bulk and slab 

models. In this method, the error in the total energy is estimated by modeling the localized extra 

charge with a Gaussian function and comparing its energy in the periodic and isolated cases. I 

implemented this correction scheme in a user-friendly and robust standalone code called SLABCC. 

I have also extended the method to handle mediums with anisotropic dielectric tensors as well as 

cases where the extra charge is localized at multiple sites. SLABCC is automated for simple cases 

while being flexible enough for advanced users to handle non-trivial ones. In slab models with a 

large vacuum between the layers, a posteriori charge correction methods may not be adequate, 

and self-consistent correction may be needed to eliminate the spurious effects. I introduce a self-
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consistent potential correction method, co-developed by myself, that is capable of dealing with 

those cases. 

Density functional theory is widely used for investigating the properties of defects in bulk and on 

the surface of solids. Local or semi-local approximations in the density functional lead to an 

underestimation of band-gap, which may cause incorrect occupation of defect states and incorrect 

formation energies. The methods also underestimate the localization of defect states, missing the 

formation of small polarons. These problems can be avoided by using higher-level approximations 

(GW or a correctly chosen hybrid functional), but the computational cost of GW methods prohibits 

their use in calculating surface defects in a periodic slab model, and even hybrid functionals make 

the study of surface chemical reactions, with a large number of variables, impractical. 

Lany and Zunger have suggested a convenient (low-cost) solution for solving the band-gap and 

charge delocalization problems by applying a correction scheme to the standard local or semi-local 

approximations. Most importantly, the linearity of the total energy as a function of the fractional 

occupation numbers is restored, leading to the fulfillment of the generalized Koopmans’ theorem. 

This method works well in the bulk, but it is not accurate on the surface due to the different 

screening environment. I show that, by making the atom- and angular-momentum-dependent 

parameters of the Lany-Zunger polaron correction also coordination-dependent, it is possible to 

correctly describe charge trapping in small polaron states on the anatase (101) and rutile (110) 

surfaces at a low computational cost. Using this technique, I have found a two-dimensionally 

localized state in anatase, which has led to a study on estimating the real size of polarons in anatase-

TiO2. 

Finally, I use the developed framework to investigate the photocatalytic CO oxidation on the 

anatase (101) surface. For the restoration of the pristine surface, I propose a mechanism to 

eliminate the surface oxygen vacancies by including electron-scavenging oxygen molecules in the 

gas phase. With the proposed mechanism, it is possible to achieve a complete catalytic cycle for 

the oxidation of CO over the anatase (101) surface.  
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Chapter 1  

Introduction 

Photocatalysts are used in a wide variety of applications, such as environmental cleaning, solar 

energy conversion, and organic synthesis [1]. A considerable amount of effort has been dedicated 

to investigating photocatalytic reactions and their mechanisms, both from an experimental and 

theoretical perspective. Charge carrier species generated from photoexcitation of photocatalysts 

may become trapped in bulk or surface defects, or they may self-trapped at low temperatures. 

Small polarons are charge carriers trapped by strong lattice relaxation at specific sites [2].  

Theoretical methods used in the study of photocatalytic reactions should capture all the relevant 

physical phenomena while being computationally affordable. Density functional theory is widely 

used for investigating the reactions on the surface of solids. Local or semi-local approximations in 

density functional theory treat correlation and exchange incompletely, which, in the case of 

semiconductors, results in an underestimation of band-gap energy, which may cause incorrect 

occupation of defect states and wrong formation energies. Hybrid functionals, which incorporate 

a portion of Hartree-Fock type non-local exchange, are more successful in reproducing the 

physical properties. However, the computational cost of using hybrid functionals makes them 

impractical for studying surface reactions. 

Lany and Zunger have proposed a computationally inexpensive method to correct for the gap error 

of semi-local approximations, using non-local, empirical external potentials and occupation 

dependent non-empirical localizing potentials to correct the delocalization error. The latter method 

works well in the bulk but is not accurate enough on the surface, so I extended it by taking into 

account the undercoordination of surface atoms. Using this technique, I have found a two-

dimensionally localized state in anatase which has led to a study on estimating the real size of 

polarons in anatase-TiO2. 
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The supercell approach is commonly used in ab initio calculations of charged defects in the bulk 

or on the surface of materials. In the supercell method, the charged defect is placed in a large cell, 

which is then periodically repeated. However, this approach suffers from one main drawback: the 

spurious interaction between the charged defect and its periodic images. Several a posteriori 

methods have been proposed for estimating the error in the total energy of models under periodic 

boundary conditions due to localized extra charges [3]. Komsa and Pasquarello have proposed a 

correction scheme that is also suitable for slab models. Although calculating the corrections is not 

trivial and involves a lot of trial and error to find the right parameters. This issue is compounded 

when the extra charge is localized on multiple sites or on the surface. I have implemented their 

method in user-friendly code to integrate it into my workflow. My goal is to develop a code that 

can make accurate corrections for an extra charge with minimal user input. I will show the 

shortcomings of a posteriori correction methods in surface models, which proves the necessity of 

having a self-consistent correction. I have participated in developing such a method. 

CO adsorption and oxidation have been widely studied on various catalysts due to their industrial 

importance. The interaction of CO and CO2 with TiO2 is crucial in many heterogeneous catalytic 

and photocatalytic reactions, e.g., low-temperature CO oxidation [4], CO hydrogenation [5], water 

gas shift reaction [6], NO reduction by CO [7], etc. Although TiO2 is commonly used as a support 

for noble metal catalysts in CO oxidation [8, 9], it can also be used as a photocatalyst to directly 

adsorb and oxidize CO molecules [10]. 

Nevertheless, the details of the photocatalytic CO oxidation reaction, though simple at first glance, 

have not been fully understood yet. Despite the higher activity of anatase in CO oxidation [10], 

this reaction has been more widely studied on rutile surfaces, where it has been shown that it cannot 

be made cyclic, i.e., it is not a real catalytic process [11] as CO2 is primarily produced from 

chemisorbed O2 residing in a surface oxygen vacancy and the oxidation leads to a defect-free 

surface [12]. Recent theoretical investigations on the anatase (101) surface, however, indicated the 

possibility of a real catalytic cycle [13], following a different mechanism than the reaction on the 

rutile surface. The oxidation of CO on the rutile (110) surface is an electron-mediated process 

requiring the presence of an oxygen vacancy Eq. (1) [12, 14]. In contrast, on the anatase (101) 

surface, this reaction is hole-assisted, creating an oxygen vacancy Eq. (2) [13]. 

[R-TiO2:VO] + O2 + CO → [R-TiO2] + CO2 (1)  
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[A-TiO2]+ CO → [A-TiO2:VO] + CO2 (2)  

Full cyclic reactions (with surface restoration) on the anatase (101) surface have not been fully 

studied yet. My ultimate goal was to develop a framework for investigating this reaction and 

identifying paths that could lead to a real photocatalytic (fully cyclic) reaction.  
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Chapter 2  

State of the art 

2.1 Photocatalysis 

Photocatalysis, or more precisely, photo-induced/photo-activated catalysis [15], commonly refers 

to heterogeneous catalytic reactions in which the reaction is induced through photon activation 

rather than thermal activation [16].  

The main steps of the photocatalytic reactions are:  

 Absorption of photons by the catalyst (not by the reactants) 

 Creation and separation of electron-hole pairs 

 Carrier transfer reactions with adsorbed species (photo-oxidation and photo-reduction) 

In this discussion, I consider heterogeneous photocatalytic reactions on semiconductor surfaces. 

The irradiation of a semiconductor by photons with an energy greater than its band gap promotes 

electrons from their valence band (VB) to the conduction band (CB). The created electron-hole 

pairs (e-/h+) may recombine again without participating in any chemical reaction, or they may 

interact with the adsorbed species on the catalyst surface, causing electron transfer from a donor 

to the VB and from the CB to an acceptor. These steps are shown schematically in Figure 1. 
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Fig. 1 Schematic representation of the primary steps in heterogeneous photocatalytic reactions on semiconductor surfaces 

However, in practice, this simplistic model is not sufficient for the accurate prediction of the 

photocatalytic process on semiconductors. Most notably, charge traps can affect electron-hole 

recombination, and charge migration rates, thereby enhancing or reducing the overall 

photocatalytic activity [17]. Therefore, due to the significant impact of the lattice imperfections on 

the photocatalytic properties [18], any theoretical model for photocatalysts should be able to 

adequately account for them. 

2.2 Titanium dioxide 

Since the first studies of photosorption [19], photocatalytic oxidation [20], and later ultraviolet 

light-induced photoelectrochemical water splitting [21] on its surfaces, TiO2 has been regarded as 

the most representative photocatalytic material and has been extensively investigated [22-24]. 

Titanium dioxide’s low cost, high resistance to photo-corrosion, non-toxicity, and the possibility 

of tailoring its properties for a specific application [25] have made it attractive for many 

environmental applications [26, 27] as well as in photovoltaics [28], sensors [29], etc. More in-

depth information on titanium dioxide, its properties, and applications can be found in the reviews 

[30, 31]. 

2.2.1 Phases 

Titanium dioxide generally occurs in nature in three crystalline forms: rutile (tetragonal), anatase 

(tetragonal), and brookite (rhombohedral). The latter is difficult to synthesize and therefore less 

studied [32]. All these structures consist of a titanium atom surrounded by six oxygen atoms 

Acceptor 

Acceptor
(-)

 

Photo-reduction 

process 

Donor
(+)

 

Donor 

Photo-oxidation 

process 

Electron 

energy 
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([TiO6]2- octahedra), with different edge and corner sharing while keeping the stoichiometry fixed 

as TiO2. In tetragonal structures, other than the lattice constants a and c, another extra parameter 

(internal parameter u) is needed to fully describe the structure and define the positions of the 

oxygen atoms. If a titanium atom is placed at the origin, then its nearest oxygen atoms are located 

at (0, 0, ±uc) in anatase, and at (±ua, ±ua, 0) in rutile. The structure parameters for anatase and 

rutile, obtained from the neutron diffraction method at room temperature are listed in Table 1. The 

unit cells of these phases are shown in Figure 2. 

Table 1 Experimental structural data for anatase and rutile phases 

Phase a (Å) c (Å) u Ref. 

Anatase 3.785 9.514 0.20806 [33] 

Rutile 4.594 2.959 0.30478 [33, 34] 

 

a 

  

b 

  

Fig. 2 Ball-and-stick and polyhedral representations of the a) anatase and b) rutile unit cells. Red spheres represent oxygen, and 

blue spheres represent titanium atoms (based on the structural data from [33])  

Anatase and rutile both exhibit photocatalytic properties [35]. In bulk form, rutile is the 

thermodynamically most stable TiO2 polymorph, but anatase is, in general, more efficient in 
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photocatalytic and photovoltaic applications due to a lower recombination rate of electron-hole 

pairs [36]. Recent studies comparing single-crystalline anatase (101) and single-crystalline rutile 

(110) photocatalytic activities confirmed the superiority of the former [10]. Despite this fact, more 

surface chemistry studies have been conducted on rutile, which stems from the ease of preparing 

large synthetic rutile single crystals and their commercial availability [37, 38].  

2.2.2 Anatase (101) surface 

The properties of semiconductor surfaces are highly dependent on their crystallographic 

orientation [39]. Under typical preparation conditions for anatase, the (101) and (100)/(010) 

surfaces as well as some (001) surfaces are most commonly observed [40]. In general, both natural 

and synthetic anatase crystals are dominated by (101) facets, which correspond to the lowest 

surface energy in stoichiometric anatase [41, 42]. Anatase (101) surfaces exhibit a sawtooth 

structure with twofold-coordinated oxygen atoms at [010]-oriented ridges. The other oxygen atoms 

are threefold-coordinated as in the bulk [43]. The structure of the anatase (101) surface, with the 

various atom types is shown in Figure 3. 

 

 

Fig. 3 Structure of the anatase (101) surface with under-coordinated atoms (fivefold-coordinated Ti and twofold-coordinated O) 

marked and visualized with darker colors 

Studies show that the anatase (101) surface does not have a strong tendency to lose twofold-

coordinated oxygen atoms upon annealing in ultrahigh vacuum [44]. Also, the bulk and subsurface 

oxygen vacancies are more stable than a vacancy on the anatase (101) surface [45]. Removal of a 

twofold-coordinated oxygen from the anatase (101) surface results in the formation of a fourfold-

Ti5C O2C 
Ti6C O3C 
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coordinated and a fivefold-coordinated titanium atom on the surface. The highly undercoordinated 

titanium atoms are likely the reason for the lower stability of surface oxygen vacancies [44].  

2.2.3 Polarons 

Both photo-excited electrons and holes in TiO2 have been found to be trapped in small polaron 

states both theoretically [46] and experimentally [47], while delocalized free carriers coexist [48]. 

Large polarons have also been experimentally observed [49] and theoretically studied [50]. Small 

electron-polarons are commonly observed in rutile [51, 52]. In bulk anatase, small electron-

polarons are not stable with respect to the free carrier, while holes are trapped in deep hole-polaron 

states [53]. The situation on the TiO2 surfaces is complex and depends on both the phase and its 

surface orientation [54]. As an example, while electron polarons are found to be stable on some 

anatase surfaces, they tend to go subsurface in rutile for most orientations [52, 55-58]. These 

polarons may diffuse to the surface and participate in reactions that require charge transfer from 

the TiO2 surface to the adsorbed species [59].  

2.3 Modelling surface reactions  

In realistic physical systems, there are >1020 atoms in each mm3, which is beyond the reach of any 

ab-initio method with the current computational resources. Nevertheless, the ideal (infinite) 

periodic solids can be conveniently modeled with a relatively small number of atoms (supercells) 

repeating in all three dimensions. Even in the case of non-periodic systems, where using the model 

of a perfect crystal may seem inappropriate, it is possible to create a large enough periodic cell 

that, within its boundaries, resembles the local structural properties of a disordered system as 

closely as possible [60]. The translation invariance imposed by the supercell approximation leads 

to a simplification of the problem and permits the implementation of efficient computational 

algorithms. Cluster and slab models are the most popular models of the solid surface [61]. Cluster 

models represent the surface with a finite number of atoms, often treated with localized basis sets 

[62].  

Slab models are supercell models with periodic boundary conditions applied to a layer of vacuum 

over a bulk-like region, resulting in alternating layers of infinitely large solid slabs and vacuum 

[62]. Figure 4 shows a 2D representation of the slab model generated from a supercell with 
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vacuum, which results in alternating sheets of infinitely wide layers separated by the vacuum. The 

highlighted region represents the repeating unit. 

 

 

a b 

Fig. 4 a) supercell for slab model; b) supercell under periodic boundary conditions generating the infinite sheets separated by a 

vacuum region.  

Slab models have the advantage of describing the band structure of the host crystal. However the 

periodic boundary conditions, used in slab models, will result in artificial interactions between the 

repeated images due to the finite size of supercells [63]. 

2.4 Charged supercell errors 

Under periodic boundary conditions, the total energy of neutral systems with no dipole moment is 

well-defined [64]. However, the total energy of the charged systems depends on an arbitrary shift 

in the electrostatic potential [65]. Under the periodic boundary conditions within the 

pseudopotential momentum-space formalism, the otherwise divergent average electrostatic 

potential within a charged cell is conventionally set to zero [66]. This can be viewed as effective 

compensation for the net charge by a homogeneous background charge (jellium). However, to 

compare the energy of different models, the effect of the charge’s interactions with its image and 

jellium must also be removed [67]. Moreover, artificial interactions between the periodic images 

due to the finite size of supercells in the slab model can cause significant errors in the calculation 

of the total energy of charged defects and directly influence formation energy, ionization energy, 

etc., making them supercell-size dependent [63].  

vacuum 

surfaces 
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Several a posteriori methods have been proposed for correcting the total energy due to the 

interaction of localized extra charge with its periodic images and the neutralizing background, 

most notably by Makov and Payne [64], Lany and Zunger [68], Freysoldt, Neugebauer and Van 

de Walle [69], and Komsa and Pasquarello [70]. Comparison of the common correction methods 

for charged defects can be found in [71, 72]. 

2.4.1 Charge correction methods 

2.4.1.1 Potential alignment 

In order to obtain physically meaningful results for the formation energy of the charged defects, 

one can correct for the undetermined offset in the energy of the models by ensuring that the offset 

in energy of the charged defect model and the neutral pristine host are consistent. This can be done 

by adding a potential alignment term to the formation energy [68].  

The common approach for potential alignment is to calculate the potentials in charged and neutral 

systems by averaging over a number of points at distances "far" from the localized charge inside 

the supercell and applying this difference to the energy of the charged supercell [73]. However, in 

practice, due to the slow decay of the Coulomb potential in charged defects, using this method can 

be problematic [3].  

2.4.1.2 Finite size scaling 

Another conceptually simple approach to overcome charged error is to calculate the energies in 

supercells of various sizes and extrapolate the results to the limit of an infinitely large supercell 

[74]. Nevertheless, due to the long-range Coulomb interaction between the localized image 

charges, the resulting energies converge very slowly with respect to the supercell size [75, 76]. 

Moreover, depending on the origin of finite size errors and the employed scaling scheme, the exact 

form of the energy vs. inverse supercell size dependency can be different from what has been 

implicitly assumed [77]. Despite the reliability of the finite-size scaling method [75], due to its 

cost both in human and computational time, it is more convenient to estimate and eliminate these 

errors in smaller supercells.  

2.4.1.3 Makov and Payne approach 

Makov and Payne [64] proposed an image charge energy correction for a localized defect inside a 

cubic supercell without a net dipole in the form of: 
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∆𝐸 =
𝑞2𝛼

2𝐿𝜀
+

2𝜋𝑞𝑄

3𝐿3𝜀
 (3)  

where q is the charge of the system,  is the Madelung constant of the lattice, which can be 

determined by Ewald summation [78], L is the side length of the cubic supercell,  is the dielectric 

constant, and Q is the second radial (quadrupole) moment of the defect charge distribution. The 

first term corresponds to the Madelung energy (point charge approximation), and the second term 

is the interaction of a localized charge distribution with the compensating background. Both terms 

are scaled by the dielectric constant of the medium. Calculating the quadrupole term Q is 

straightforward but computationally costly; therefore, the second term is often omitted. This 

method has also been extended to models with arbitrary supercell shapes [79] and anisotropic 

dielectric screening [80], but it is only valid for strongly localized charges. 

2.4.1.4 Lany and Zunger charge correction 

Lany and Zunger [68] proposed a practical approximation to Q in Makov and Payne’s correction 

scheme by using the difference between the charged and neutral defect far from the defect as ≈

𝑞/𝐿3(1 − 𝜀−1) and used it for calculating the quadrupole moment as: 

𝑄 = −
𝑞

4
𝐿2 (1 −

1

𝜀
) (4)  

Therefore, the full charge correction can be approximated by a first-order correction. Lany and 

Zunger also showed the necessity of including a potential alignment in the energy correction, and 

proposed a correction scheme as: 

∆𝐸 = (1 + 𝑐𝑠ℎ(1 − 𝜀−1))∆𝐸𝑖
1 + 𝑞. ∆𝑉 (5)  

where csh is the shape factor of the supercell (-0.369 for simple cubic), ∆𝐸𝑖
1 is the first order image 

charge correction, equivalent to the first term in Makov-Payne’s charge correction Eq. (3), and ∆𝑉 

is the potential alignment, which is calculated using the average of the atomic-site electrostatic 

potentials, as reference, excluding the immediate vicinity of the defect. If the dielectric constant is 

sufficiently large and the supercell is approximately isotropic, the image charge correction term 

reduces to ≈ 2
3⁄ ∆𝐸𝑖

1. 
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2.4.1.5 Freysoldt, Neugebauer, and Van de Walle approach 

Freysoldt, Neugebauer, and Van de Walle [69] proposed a more elaborate scheme for energy 

correction by modeling the extra charge with a Gaussian charge distribution embedded into a 

uniform isotropic dielectric medium. They decomposed the effects of the extra charge (q) into a 

short-range potential (Vsr), which accounts for the variations in the microscopic screening, and a 

long-range potential (Vlr), which is dominated by the macroscopically screened Coulomb potential. 

The total energy correction ΔE is obtained as follows: 

∆𝐸 =
1

2
∫([𝑞(𝑟) + 𝑛][∆𝑉𝑞

𝑙𝑟(𝑟)] + 𝑛𝑉𝑞
𝑙𝑟(𝑟)) 𝑑3𝑟 + 𝑞∆𝑉 (6)  

𝑉𝑞
𝑙𝑟(𝑟) =

1

𝜀
∫

𝑞(𝑟′)

|𝑟 − 𝑟′|
𝑑3𝑟′ (7)  

∆𝑉 = ∫𝑉𝑞
𝑠𝑟(𝑟)𝑑3𝑟 (8)  

where n is the neutralizing background (jellium), ΔVlr is the artificial long-range potential due to 

periodic repetition, and ε is the macroscopic dielectric constant, which can be computed from 

density-functional perturbation theory [81] or from the response to a finite sawtooth potential [82]. 

In practice, the potential alignment term ΔV relies on the short-range potential Vsr decaying to zero 

far from the charged defect, and therefore, the difference in the average potentials of the perfect 

and the charged defect models is used in its determination. 

This method has been implemented in the S/PHI/nX package [83] and is also available as a stand-

alone tool (sxdefectalign). It can be easily applied to supercells of various shapes and has been 

extended to model the extra charge in anisotropic mediums [65]. Usually, it uses a planar-averaged 

electrostatic potential in the alignment term, which cannot be easily calculated for defects with 

large atomic relaxations.  

2.4.1.6 Komsa and Pasquarello approach 

Komsa and Pasquarello proposed a correction scheme, considering the existence of surfaces and 

interfaces in the supercell, demonstrated its reasonable performance in slabs [70], and extended 

the method to calculate the charge correction for 2D materials [84, 85]. In this approach, the extra 

charge is also modeled with a Gaussian distribution, and the correction is calculated as: 

E = Eisolated − Eperiodic + q.V (9)  
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where Eperiodic and Eisolated are the energies of the charge distribution with, and without the periodic 

boundary conditions, respectively. Eperiodic includes the interactions with the periodic images and 

with the background charge. V is the model potential alignment term, which can be calculated 

from the difference between the potential resulting from the model charge and the electrostatic 

potential obtained from the electronic-structure calculations far from the defect. 

Eperiodic can be calculated as: 

𝐸periodic =
1

2
∫𝑉model(𝑟)𝜌model(𝑟)  dr (10)  

where Vmodel(r) is the electrostatic potential originating from charge model(r) under periodic 

boundary conditions and can be obtained through the solution of the Poisson equation: 

𝛻 ⋅ (𝜀(𝑟)𝛻𝑉model(𝑟)) = −𝜌model(𝑟) (11)  

The energy of an isolated defect Eisolated can be obtained analytically for simple cases [70] or 

through extrapolation of Eperiodic to an infinitely large size by uniformly scaling the system in all 

directions.  

  



 

15 

 

Chapter 3  

Methods 

3.1 Electronic structure calculations 

Nowadays, electronic structure calculations play a key role in understanding the reaction 

mechanisms and predicting materials’ properties, which makes it possible to design new catalysts 

and help the interpretation of the experimental data [86-88].  

Within the Born-Oppenheimer approximation [89] (stationary nucleus), the nonrelativistic 

electronic Schrödinger equation �̂�𝜓 = 𝐸𝜓 for N interacting electrons in a time-independent 

external potential vext(r) can be described with a Hamiltonian operator (in atomic units) as: 

�̂� = −
1

2
∑𝛻𝑖

2 +

𝑁

𝑖=1

∑𝑣𝑒𝑥𝑡(𝑟𝑖)

𝑁

𝑖=1

+ ∑∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖<𝑗

𝑁

𝑖=1

= �̂� + �̂�𝑒𝑥𝑡 + �̂�𝑒𝑒 (12)  

where T is the kinetic energy operator, Vext is the potential energy operator for the interaction of 

the electrons with the external field, and Vee is the potential energy operator for electron-electron 

interaction. In our cases, the external potential is simply the Coulomb potential of the nuclei. The 

solution of the Schrödinger equation with this Hamiltonian is a many-body wave function ψ that 

depends on all electronic degrees of freedom. Currently, there is no general method for the exact 

solution of this equation for realistic physical models that is feasible with the currently available 

computational resources [90]. 

Most of the calculations on heterogeneous catalytic systems nowadays use the DFT (density 

functional theory) approach [91, 92]. DFT is a first-principle-based method that also includes 

electron correlation at relatively low computational cost [93]. 

3.1.1 Density Functional Theory 

Historically, the 1964 paper of Hohenberg and Kohn [94] marks the start of DFT as it is commonly 

known today. The 1st Hohenberg-Kohn theorem states that the external potential, to within a 
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constant, is a unique functional of the charge density and charge density only. The 2nd theorem 

states that there is a universal functional for energy that depends only on the charge density and is 

valid for any external potential (hence, any atomic configuration). Using this functional, the total 

energy reaches its minimum value with respect to all possible charge densities if and only if the 

charge density is the true ground state. To sum up, the core concept of DFT is that the total electron 

density alone completely and exactly contains all the information about the ground state of a many-

electron system. The ground state energy E is a variational functional of electron density ρ only, 

and the universal Hohenberg-Kohn functional F[ρ] includes all the interactions, i.e. the kinetic 

energy functional T[ρ], and the full electron-electron interactions functional J[ρ]. 

𝐸[𝜌] = 𝑉𝑒𝑥𝑡[𝜌] + 𝐹[𝜌] (13)  

𝐹[𝜌] = 𝑇[𝜌] + 𝐽[𝜌] (14)  

Hohenberg-Kohn presented finding a 3-dimensional charge density as an alternative to solving the 

3N-dimensional many-body Schrödinger equation for calculating all the ground state properties. 

Although the proof was originally provided for the “v-representable”1 densities with non-

degenerate ground states and integer electron numbers, the theory was later extended to various 

degrees beyond these strict requirements [95-98]. 

3.1.2 Kohn-Sham approach 

Eq. (14) has two unknown functionals: the kinetic energy of the electrons T and the non-classical 

part of the electron-electron interaction J. In 1965, Kohn and Sham [99] introduced the concept of 

using a non-interacting electronic system with the same density as the reference system but built 

from a set of one electron functions, usually referred to as Kohn-Sham orbitals, for which the 

kinetic energy can be easily calculated.  

Within the Kohn-Sham formulation, the electronic energy of the ground state of a system 

comprising n electrons and N nuclei can be written as sum of the kinetic energy of the non-

interacting electrons (T0), interactions of electrons with external potential (nuclei with charge Z) 

(Vext), Coulomb (classical) self-interaction of electron density, i.e. electron–electron repulsion (J0) 

and exchange-correlation (XC) term (EXC) which is the exchange and correlation energy of an 

                                                 

1A v-representable charge density is associated with an anti-symmetric ground-state wave function 
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interacting system and incorporates all the non-classical effects i.e. correction to the kinetic energy 

arising from the interacting nature of the electrons and non-classic corrections to the electron-

electron repulsion energy. 

𝐸[𝜌] = 𝑇0[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝐽0[𝜌] + 𝐸𝑋𝐶[𝜌] (15)  

𝑇0[𝜌] = −
1

2
∑∫𝜓𝑖

∗(𝑟) 𝛻𝑖
2𝜓𝑖(𝑟)

𝑛

𝑖=1

𝑑𝑟 (16)  

𝑉𝑒𝑥𝑡[𝜌] = − ∑ ∫
𝑍𝑋

𝑟𝑋
𝜌(𝑟)

𝑁

𝑋=1

𝑑𝑟 (17)  

𝐽0[𝜌] =
1

2
 𝜌

(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 (18)  

𝜌(𝑟) = ∑∫𝑓𝑖|𝜓𝑖(𝑟)|
2

𝑛

𝑖=1

𝑑𝑟 (19)  

𝑛 = ∑𝑓𝑖

𝑛

𝑖=1

 (20)  

∫|𝜓𝑖(𝑟)|
2𝑑𝑟 = 1 (21)  

where Ψi are the Kohn-Sham orbitals and fi are the occupations of each one as 0 ≤ fi ≤ 1. The 

electronic ground state is determined by minimizing the total energy functional of Eq. (15) at a 

fixed ionic geometry. The charge density can be constructed from the Kohn-Sham orbitals and 

their occupation according to Eq. (19) subject to the constraints of Eqs. (20-21). The normalization 

of the occupied or partially-occupied Kohn-Sham orbitals is guaranteed by Eq. (21). These 

equations can be alternatively expressed as a nonlinear eigenvalue problem: 

[−
1

2
𝛻2 + 𝑣𝐾𝑆(𝑟)] 𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟) (22)  

𝑣𝐾𝑆(𝑟) = 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻[𝜌(𝑟)] + 𝑣𝑋𝐶[𝜌(𝑟)] (23)  

𝑣𝐻[𝜌(𝑟)] = ∫
𝜌(𝑟′)

|𝑟 − 𝑟′|
 𝑑𝑟 (24)  

𝑣𝑋𝐶[𝜌(𝑟)] =
𝛿𝐸𝑋𝐶[𝜌(𝑟)]

𝛿𝜌(𝑟)
 (25)  
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where vH is the Hartree potential and vXC is XC potential. This leads to an effective one-electron 

formulation of our quantum many-body problem, with the XC energy functional/potential as our 

only unknown term.2 Although the ground state charge densities can be obtained through the direct 

minimization of the total energy E with respect to the basis set coefficients [100-102], the objective 

function of the optimization depends on many parameters and is highly nonlinear with many local 

extrema. 

The resulting Schrödinger-like equation of the Kohn-Sham formulation [Eq. (22)] is a non-linear 

eigenvalue equation with a Hamiltonian that implicitly depends on the wave function. This 

eigenvalue problem is commonly solved using the self-consistent field (SCF) method, which 

removes the nonlinearity of the Kohn-Sham eigenvalue equations by solving them for an 

approximate input Hamiltonian. The resulting Kohn-Sham orbitals will yield a charge density that, 

in general, is not consistent with the input Hamiltonian, but this density can be used to improve 

the approximate Hamiltonian. 

The initial guess for the charge density can be chosen randomly, or based on other methods such 

as the superposition of the atomic densities or the extended Hückel method [103]. Then the Kohn-

Sham potential is generated for this charge density. Evaluation of the Hartree potential in Eq. (24) 

requires solving a Poisson equation, which is commonly done using the fast Fourier transform 

[104], fast multipole method [105], or multigrid approach [106]. These algorithms can be 

efficiently implemented in parallel [107]. The constructed eigenvalue problem is commonly solved 

using the conjugate gradient method [108], residual vector minimization-direct inversion in the 

iterative subspace (RMM-DIIS) scheme [109], Chebyshev-filtered subspace iteration [110], or 

block Davidson algorithms [111] such as the locally optimal block preconditioned conjugate 

gradient (LOBPCG) [112]. Despite the existence of efficient parallel algorithms, this step is 

usually the most time-consuming part of the calculation for a large system [113]. 

After solving the Kohn-Sham equations, instead of using the obtained density from the previous 

SCF step directly for the next step, the iterative improvement of the charge density, i.e., mixing 

the new electron density with the result of the previous SCF steps, is often more efficient and also 

preferred [114]. The common mixing schemes include the Newton-Broyden methods [115], 

                                                 

2 It should be noted that the Kohn-Sham method is an exact formulation of the Hohenberg-Kohn theorem. 
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Anderson method [116], and Pulay mixing [117] (also known as direct inversion on the iterative 

subspace, DIIS). The obtained self-consistent charge density can be used to calculate the ground 

state energy of the system. The changes in charge density or total energy are often used as the 

convergence criteria in the SCF cycle. It can be shown that by using a linear combination of the 

input and output densities in each step, this procedure is guaranteed to converge using the exact 

functional [118]. A simplified schematic flow chart of this process is depicted in Figure 5. 

 

Fig. 5 A simplified flow-chart of self-consistent approach for solving the Kohn-Sham equations 

The predictive power of DFT combined with the computational convenience of the Kohn-Sham 

formulation has led to the development of numerous software packages that provide the possibility 

of applying this method to the simulation of a wide variety of models. Some of the most popular 

packages for solid-state simulations include ABINIT [119], CASTEP [120], CP2K [121], 

CRYSTAL [122], FHI-aims [123], GPAW [124], QUANTUM ESPRESSO [125], S/PHI/nX [83], 

SIESTA [126], VASP [114, 127], and WIEN2k [128]. 

3.1.3 Brillouin zone sampling 

Although the Kohn-Sham formulation of DFT makes it possible to find the ground state 

distribution for any number of electrons in an external potential, in reality explicitly performing 

these calculations for the models with practical size (on the order of 1023 atoms) using our current 

computational power and storage capacity is not feasible. To calculate the properties of bulk 
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materials, one can use the translational symmetry of the [ideal] crystalline models to drastically 

decrease the amount of necessary computations.  

Following Bloch’s theorem, the wavefunction of an electron in an external periodic potential can 

change only by a phase factor upon translation by a lattice vector: 

𝜓(𝑟 + 𝑅) = 𝑒𝑖𝑘𝑅𝜓(𝑟) (26)  

where R is a lattice vector. This constraint on the wavefunction can also be stated as follows: 

𝜓𝑘(𝑟) = 𝑒𝑖𝑘⋅𝑟𝑢𝑘(𝑟) (27)  

where uk(r) is a function with the same periodicity as the external potential and k is the Bloch wave 

vector, which [for an infinite lattice] is a continuous quantum number with unique values only 

within a single unit cell of the reciprocal space. Therefore, in periodic systems, it is sufficient to 

know the wave functions within the primitive unit cell of the reciprocal lattice (first Brillouin 

zone). For example, the charge density can be obtained as follows: 

𝜌(𝑟) = ∑∫
1

Ω𝐵𝑍
𝑓𝑖,𝑘|𝑢𝑖,𝑘(𝑟)|

2

𝐵𝑍

𝑑3𝑘

𝑛

𝑖=1

 (28)  

where Ω𝐵𝑍 is the volume of the first Brillouin zone, and the occupation numbers are fi,k = 1 for 

occupied states and 0 otherwise. Typically, the lattice-periodic factor of the wave function uk(r) is 

weakly dependent on k. Therefore, it is possible to estimate the Brillouin zone integral by sampling 

its value at a finite set of k points.  

𝜌(𝑟) = ∑ ∑
1

Ω𝐵𝑍
𝑓𝑖,𝑘|𝑢𝑖,𝑘(𝑟)|

2

𝑘∈𝐵𝑍

𝑛

𝑖=1

 (29)  

In principle, it is possible to calculate this integral accurately by choosing the k-points on a very 

fine mesh. However, in practice, this approach requires a considerable amount of computational 

power. For sufficiently smooth functions, it is possible to obtain accurate results by using a 

carefully selected set of points (special points), in reciprocal space [129, 130].  

The Monkhorst-Pack k-point set [131, 132] is a commonly used, regularly spaced k-point set for 

sampling the Brillouin zone. Although more efficient Brillouin zone sampling methods are also 

available [133, 134]. The Monkhorst-Pack set can be represented as: 



 

21 

 

�⃗� = ∑
2𝑛𝑖 − 𝑁𝑖 − 1

2𝑁𝑖
𝑖=1,2,3

�⃗� 𝑖 

𝑛𝑖 = 1…𝑁𝑖 

(30)  

where �⃗� 𝑖 are the reciprocal lattice vectors, and Ni are the number of subdivisions in each direction. 

The Monkhorst-Pack k-point set is usually specified by a product of three integer numbers, e.g., 

8×8×8 which represents the number of reducible k-points in each direction. However, in practice, 

only the irreducible k-points are used in the calculations, which is a smaller set of k-points with 

the symmetrically equivalent ones removed. It is common to use the linear tetrahedron method for 

the Brillouin zone integration instead of simple histogram integration, which provides more 

accurate results with the same number of k-points [135, 136]. 

3.1.4 Plane wave basis 

Finite basis approximation is an important step in converting the Kohn-Sham equation into an 

algebraic system of equations that can be solved numerically. Kohn-Sham orbitals Ψi are 

continuous functions of a continuous three-dimensional variable (r). These orbitals can be 

approximated by the basis functions as: 

𝜓𝑖(𝑟) = ∑𝑐𝑗𝑖𝜙𝑗(𝑟)

∞

𝑗=1

≈ ∑𝑐𝑗𝑖𝜙𝑗(𝑟)

𝑁𝑏

𝑗=1

 (31)  

where the φj functions form a complete basis. In principle, however, the expansion is truncated by 

some criterion. 

Modern electronic structure methods, based on their choice for the form of basis functions, can be 

broadly categorized into two classes: the plane wave basis methods and the localized basis set 

methods. 

Plane wave methods have several distinct advantages over localized basis sets, making them 

particularly attractive for the calculation of solid-state models. A few of the relevant ones for our 

discussion are: 

 The plane wave basis set is independent of atomic positions and can give an unbiased 

description of the whole simulation model, including the bulk, vacancies, surfaces, and 

vacuum regions.  
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 Highly efficient fast Fourier transform algorithms can be used for real-space to reciprocal-

space transformations. 

 Although, in principle, an infinite basis set is required to expand the wave functions, in the 

case of the plane-wave basis, the expansion coefficients for the plane waves with smaller 

kinetic energy are more important. Therefore, the basis set can be truncated to only include 

plane waves with kinetic energies that are less than a specific cutoff energy. Unlike the 

localized basis sets, achieving basis set convergence is simple and systematically 

controlled by the cut-off energy in the plane wave basis set. 

 The Hellmann-Feynman forces [137] can be easily calculated from the expectation value 

of the Hamiltonian with respect to the ionic coordinates without any Pulay forces [138]. 

 Basis-set superposition errors, which have to be carefully estimated in calculations with 

local basis sets are completely avoided. 

On the other hand, there are some shortcomings in using the plane wave basis. Notably, the local 

atomic/bonding properties are not readily available, and a projection of the plane wave basis on a 

localized basis is usually required to retrieve this information [139]. Also, large cut-off energies 

are needed to accurately describe localized states using plane waves. This increases the 

computational cost for systems that include first-row atoms. 

Moreover, in surface calculations with slab models, especially for investigating surface reactions, 

the distance between the slabs needs to be large enough to avoid artificial interactions. This 

makes the size of the supercell in the direction normal to the surface quite large and the 

corresponding reciprocal lattice vector quite short, resulting in a large number of plane waves 

within a given cutoff energy [140]. 

3.1.5 Linearized augmented-plane-wave 

Rapid oscillations of the wavefunction in the region near the nucleus present a challenge for the 

plane wave expansion. In this region, the plane wave expansion converges very slowly, and a large 

number of plane waves is needed to represent the wavefunction accurately. The augmented plane-

wave method [141] solves this issue by expanding the wavefunction with the spherical harmonics 

in the region surrounding the atoms but using the plane waves outside these spheres and joining 

these two continuously at the surface. However, there are several limitations inherent to this 
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method, e.g., the formulation as an energy-dependent characteristic equation and the continuity 

problem when the spherical harmonics are zero at the surface, which makes it inefficient in 

practice. To avoid these problems, the linearized augmented plane-wave (LAPW) method was 

proposed [142], which adds the energy derivative to the original energy dependence of the radial 

basis-function. In the LAPW method, the derivatives are also kept continuous through the spherical 

region’s boundary, which increases the number of plane waves required for the calculations. 

3.1.6 Pseudopotentials 

The core region near the nuclei is primarily composed of tightly bound core electrons that do not 

actively participate in chemical bonding. In most cases, we are solely interested in a relatively 

small change in the total energy of our model system due to the rearrangements of the valence 

electrons, and therefore the core electrons of the atoms can be safely ignored. This problem can be 

mitigated by adding pseudopotentials to the Kohn-Sham potential, which are carefully designed 

repulsive potentials and only affect a small region around the nuclei. 

There are multiple ways to construct the pseudopotentials. Two commonly used ones include 

norm-conserving pseudopotentials [143], which conserve the core-region charge and are 

analytically straightforward to treat, and ultrasoft pseudopotentials [144], which generate a 

smoother wave function by including a compensating augmentation charge, allowing for a smaller 

basis set.  

3.1.7 Projector-augmented wave method 

By combining the ultrasoft pseudopotentials with the LAPW method, we can avoid all-electron 

calculations but achieve high accuracy with small numbers of plane waves (large grid spacing). 

This approach is known as the projector augmented wave (PAW) method [145] and can be 

efficiently implemented in the ultrasoft pseudopotential codes [127].  

3.1.8 Exchange-correlation functionals 

The only unknown term of the total energy expression for the Kohn-Sham system, Eq. (15) is the 

XC energy EXC. Although DFT in the Kohn-Sham formulation is formally an exact theory for the 

ground-state electronic properties of a given system, it depends on an unknown (“very complicated 

and essentially uncomputable” [146]) universal XC functional (density functional) that has to be 
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approximated. After the introduction of DFT, dozens of non-empirical and semi-empirical XC 

functionals have been developed, and finding accurate and transferable XC functionals is still an 

active field of research [147, 148]. 

3.1.8.1 Local Density Approximation 

The local density approximation (LDA) is the simplest approach to representing the XC functional. 

LDA implicitly assumes that the XC energy at any point in space is a function of the electron 

density at that point in space only, i.e., the “local” value of ρ. In practice, the most widely used 

LDA functionals are those derived from an infinite homogeneous electron gas (HEG) model of the 

same density [99].  

𝐸𝐿𝐷𝐴
𝑋𝐶 = ∫𝜌(𝑟)𝑒𝐻𝐸𝐺

𝑋𝐶 (𝜌)𝑑3𝑟 = ∫𝜌(𝑟)[𝑒𝐻𝐸𝐺
𝑋 (𝜌) + 𝑒𝐻𝐸𝐺

𝐶 (𝜌)] 𝑑3𝑟 (32)  

where 𝑒𝐻𝐸𝐺
𝑋𝐶 (𝜌) is the XC energy per electron of the HEG with a density of ρ. This approximation 

was later generalized to spin-polarized systems [149]. 

Within the LDA approximation, the XC functional is assumed to be decomposable into the 

exchange and correlation energy functionals. While the exchange functional 𝑒𝐻𝐸𝐺
𝑋 (𝜌) can be easily 

calculated analytically, the correlation functional 𝑒𝐻𝐸𝐺
𝐶 (𝜌) is only analytically known in extreme 

(very high and low density) limits, and is commonly estimated from fitting to accurate quantum 

Monte-Carlo simulations [150]. In general, LDA underestimates the equilibrium lattice constants 

of the solids by ~1% and may overestimate the binding energies by as much as by ~1 eV/atom 

[151].  

3.1.8.2 Generalized gradient approximation 

In real atomic/molecular/condensed systems, the electron density is a rather rapidly varying spatial 

function. To allow for these variations, a simple, intuitive approach is to include the gradient of 

the electron density in the XC functional [152]. Generalized gradient approximation (GGA) 

methods take the spatial inhomogeneity of the electron density into account by making the XC 

energies dependent not only on the density, but also on the “semi-local” gradient of the density ∇ρ 

[153]. In general, these functionals can be expressed as: 

𝐸𝐺𝐺𝐴
𝑋 = ∫𝜌(𝑟)𝑒𝐻𝐸𝐺

𝑋 (𝜌)𝑔𝐺𝐺𝐴
𝑋 (𝜌, 𝛻𝜌)𝑑3𝑟 (33)  
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where g(ρ,∇ρ) is the local inhomogeneity correction factor. In comparison with LDA, GGA 

functionals usually give a better estimation of the atomization energies and the energy barriers 

[154]. 

3.1.8.2.1 PBE 

The Perdew-Burkre-Ernzerhof (PBE) functional is one of the most widely used GGA-level XC 

functionals [154] and has been implemented in many DFT packages [92]. Although there have 

been several attempts to improve the PBE functional at the GGA level, namely revPBE [155], 

RPBE [156], and PBEsol [157], by modifying the form of the enhancement factor or the values of 

the employed constants, unfortunately these functionals do not universally improve upon the PBE 

results [158-161]. PBE is designed to satisfy a selected set of theoretical constraints on the 

properties of the universal functional. The exchange part of this functional includes a semi-local 

enhancement factor term F, which in turn depends on a dimensionless reduced density gradient s. 

𝐸𝑃𝐵𝐸
𝑋 = ∫𝜌(𝑟)𝑒𝐻𝐸𝐺

𝑋 (𝜌)𝐹𝑃𝐵𝐸
𝑋 (𝑠)𝑑3𝑟 (34)  

𝑒𝐻𝐸𝐺
𝑋 (𝜌) = −

3

4
(
3

𝜋
)
1/3

𝜌(𝑟)1/3 (35)  

𝐹𝑃𝐵𝐸
𝑋 (𝑠) = 1 + 𝜅 −

𝜅

1 + 𝜇𝑠2/𝜅
 (36)  

𝑠(𝑟) =
1

2(3𝜋2)1/3

|𝛻𝜌(𝑟)|

𝜌(𝑟)4/3
 (37)  

where µ = 0.21951, and κ = 0.804 are the constants that have been determined from the satisfaction 

of the correct behavior in the HEG limit, and the Lieb-Oxford bound [155] (|𝐸𝑋𝐶| ≤ 2.275|𝐸𝐿𝐷𝐴
𝑋 |) 

locally [156], respectively. Only the range of 0 < s < 3 is important in most of the physical models 

[157]. 

3.1.9 Errors in common approximations of DFT 

As mentioned earlier, although DFT is formally exact, in practice, DFT calculations rely on an 

approximation of the unknown XC functional. Considerable effort has been devoted to 

investigating the properties of the exact universal functional and using the results as a guide for 

the development of approximate functionals [158, 159]. However, a systematic approach for 

constructing or improving universally applicable functionals has not yet been realized [160-162]. 
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3.1.9.1 Self-interaction error 

For any system with one electron, T0 and V are the exact kinetic and potential energies of the 

system, and there are no electron-electron interactions. This requires the sum of EXC and J0 to be 

zero [163]. Unfortunately, in LDA/GGA functionals, this sum is not zero, and these functionals 

suffer from one-electron self-interaction error (SIE). This issue also exists beyond the one electron 

limit [164].  

SIE is commonly manifested as too much charge delocalization (delocalization error) [165]. This 

failure in predicting the stability of free vs. self-trapped charges can prevent the formation of small 

polarons [166]. SIE is also responsible for the underestimation of bandgaps by LDA/GGA 

functionals, which negatively impacts related quantities such as the formation energy of defects 

[167]. SIE is also the underlying reason for too low total energies, especially for systems with a 

non-integer number of electrons [168]. This is important in the calculation of the energy of 

transition-state complexes in chemical reactions.  

3.1.9.1.1 Kohn-Sham Orbital energies 

Although DFT itself assigns no formal interpretation to the Kohn-Sham orbitals and their energies, 

they have been proven to be more than just an artificial construct, and provide a useful 

approximation for some molecular properties [169], and a lot of effort have been invested in 

extracting chemical information from them [170]. For example, according to Janak’s theorem 

[171], the Kohn-Sham orbital energies in DFT satisfy the following condition: 

𝜕𝐸

𝜕𝑓𝑖
= 𝜀𝑖 (38)  

where E is the total energy, and fi and εi are the occupation and energy of the i-th Kohn-Sham 

orbital, respectively.  

Also, a necessary non-self-interaction condition can be expressed in terms of the Kohn-Sham 

orbitals as [172]: 

𝜕𝜀𝑖(𝑓
′)

𝜕𝑓 ′
|
𝑓′=𝑓𝑖

= 0,  0 ≤ 𝑓𝑖 ≤ 1 (39)  
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3.1.9.1.2 Non-integer electron number- linearity 

Perdew, Parr, Levy, and Balduz [96] extended the Hohenberg-Kohn theorem to systems with 

fractional electron number and showed that for the exact functional, the total energy is a piecewise 

linear function of the total electron numbers, with a derivative discontinuity at any integer number. 

This requirement directly translates into a condition for the XC functional in Kohn-Sham DFT.  

Using Janak’s theorem, Eq. (38), the necessary non-self-interaction condition, Eq. (39) can be 

expressed as a condition on the total energy curvature: 

𝜕2𝐸

𝜕𝑓𝑖
2 = 0 (40)  

Unfortunately, the energies calculated by the LDA/GGA XC functionals or using the Hartree-Fock 

(HF)-type (non-local) exchange do not exhibit such behavior. Using Hartree-Fock-type exchange 

gives rise to a concave total energy function. In contrast, LDA- and GGA-based DFT functionals 

give rise to a convex total energy function. This behavior is schematically shown in Figure 6. 

 

a b 

Fig. 6 Schematic presentation of change in a) total energy with fractional electron charges, and b) the Kohn-Sham orbital 

energies with the addition of an electron for different levels of approximations 

As a manifestation of SIE [164], the under- or overestimated derivative discontinuity gives rise to 

a much too small or much too wide band gap, respectively [173-175], and the nonlinearity is shown 

to be related to the delocalization of Kohn-Sham states [176]. 
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3.1.9.1.3 Koopmans’ theorem 

It has been shown that the original Koopmans’ theorem [177], which was obtained using the frozen 

MO approximation for closed-shell systems in Hartree-Fock theory, is an exact relation in Kohn-

Sham DFT for a fixed geometry of spin-polarized extended/finite systems [178]. 

The generalized Koopmans’ theorem (gKT) in Kohn-Sham DFT states that by including the 

correlation and orbital relaxation, the first ionization potential (IP) of the N-electron system is 

equal to the negative of the highest occupied Kohn-Sham orbital energy (εmax) [178-180]. Applying 

the gKT to the N+1 electron system will yield a similar relation for the electron affinity (EA) as in 

Eq. (38) or through Janak’s theorem to Eq. (39) [175]. On the basis of the necessary non-self-

interaction condition, this implies that EA should also be equal to the lowest unoccupied Kohn-

Sham orbital energy (εmin) of the N-electron system [181]. 

𝐼𝑃 =  𝐸(𝑁 − 1) –  𝐸(𝑁)  =  −𝜀𝑚𝑎𝑥(𝑁) (41)  

𝐸𝐴 =  − (𝐸(𝑁) –  𝐸(𝑁 + 1))  =  𝜀𝑚𝑎𝑥(𝑁 + 1) (42)  

𝐸𝐴 = ∫ 𝜀𝑚𝑎𝑥

1

0

(𝑁 + 𝑓)𝑑𝑓 = 𝜀𝑚𝑎𝑥(𝑁 + 1) (43)  

𝐸𝐴 =  𝜀𝑚𝑖𝑛(𝑁) (44)  

Since derivative discontinuity and piecewise linearity are very closely related, problems in both 

can be resolved by corrections based on the fulfillment of the generalized Koopmans’ condition 

instead of explicit linearity evaluation [182]. Several approaches have been employed to mitigate 

the aforementioned problems with approximate functionals, among which hybrid functionals, and 

occupation-dependent nonlocal potentials are most commonly used. 

3.1.9.2 Common mitigation methods  

3.1.9.2.1 Hybrid Functionals 

Hybrid density functionals add a fraction of the non-local exchange of Hartree-Fock theory to DFT 

XC functionals, thereby compensating the nonlinearity of LDA/GGA functionals with Hartree-

Fock exchange. Although adiabatic connection methods [183] can be used for non-empirical 

estimation of the mixing ratio [184], it has been shown that when using a GGA functional, the 

mixing ratio cannot be a single constant [185]. Regardless, by using screened hybrid functionals 

like the one proposed by Heyd, Scuseria, and Ernzerhof (HSE) [186, 187], we can partially 

overcome the problems due to SIE [188] and achieve high accuracy [189]. However, in practice, 
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for typical systems, hybrid functional calculations are one to two orders of magnitude more 

expensive than GGA calculations [190], and this increase in calculation time prevents hybrid 

functionals from being widely accessible, especially for investigating surface reactions using the 

slab models. 

3.1.9.2.2 DFT+U 

One common low-cost solution to the shortcomings of LDA/GGA is to use the DFT plus Hubbard 

U approach [191], which includes an on-site Coulomb repulsion potential U for the explicit 

treatment of electronic correlation with a Hubbard-like model [192]. The total energy functional 

of the system can be expressed as the sum of the original DFT energy EDFT, an atomic orbital 

occupation-dependent energy correction for interaction within the (commonly d or f) shells EU, 

and a double-counting correction term Edc [193]. 

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 + 𝐸𝑈 − 𝐸𝑑𝑐 (45)  

𝐸𝑈 =
1

2
𝑈 ∑𝑓𝑖𝑓𝑗

𝑖≠𝑗

 
(46)  

𝑉𝑖(𝑟) = 𝑉𝐷𝐹𝑇(𝑟) + 𝑈 (
1

2
− 𝑓𝑖) (47)  

where Vi is the orbital-dependent potential. This potential separates the energy of the filled and 

empty Hubbard-corrected bands by the Coulomb parameter U, which can partially remedy the 

bandgap problem [194]. It is also repulsive for less than half-filled orbitals (fi < 0.5) and attractive 

otherwise, which can oppose the delocalization error [195]. The double-counting term Edc 

compensates for the electron-electron interaction contribution, which is already included in the 

EDFT.  

Extracting the precise XC energy of DFT for the correlated subspace is not trivial [196]. This term 

is commonly estimated from the fully localized limit [197] or from the mean-field method [191]. 

In practice, the DFT+U approach partially corrects the SIE and can introduce derivative 

discontinuities in the total energy [198]. The +U correction has been reported to be successful in 

many cases for bulk [199, 200] or surface [201, 202] modeling of TiO2. 

Although U values can be calculated from ab initio calculations [203, 204], they are usually 

obtained by fitting physical properties of the material such as bandgap, charge localization, and X-

ray photoelectron spectrum to experimental or higher-level calculation results [205]. In most cases, 
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it is not possible to determine a universal value for the U parameter to predict all properties of the 

material equally well [200]. Therefore, choosing a suitable U parameter is not trivial and depends 

on the employed density functional and desired property, and any chosen value may have 

undesired side effects [206-208].  

3.1.9.2.3 Non-local external potentials for band-gap correction 

Christensen proposed the method of adding an empirical external potential to atomic sites α in the 

self-consistent LDA calculation for band-gap correction [209]. Based on that, Lany and Zunger 

developed a method for band gap correction that makes the external potential also angular 

momentum l –dependent (nonlocal) for more flexibility in fitting experimental band structure 

properties [210]. The energy correction for this method can be simply expressed as: 

𝐸𝐷𝐹𝑇+𝑁𝐿𝐸𝑃 = 𝐸𝐷𝐹𝑇 + ∑𝑉𝛼,𝑙
𝑁𝐿𝐸𝑃 𝑛𝛼,𝑙 (48)  

where nα,l is the occupation (partial charge) of the orbital l on the atom α. In contrast to the potential 

in LDA+U approach Eq. (47), NLEPs are simple constant external potentials that are treated as 

free parameters. They are not derived from a model for the electron-electron interaction, and they 

do not depend on the orbital occupations [68].  

This method can be used to correct the band gap problem in materials where the upper valence 

bands and the lower conduction bands are made almost entirely of the orbitals of the anion and the 

cation, respectively. 

3.1.9.2.4 External potentials for localization correction 

To overcome the localization error, Lany and Zunger used non-empirical external potentials to 

minimize SIE by enforcing the generalized Koopmans’ condition, ensuring linear behavior [210, 

211]. The hole state (Vh) and electron state (Ve) potentials are in the form of: 

𝑉ℎ = 𝜆ℎ (1 −
𝑛𝑚

𝑛ℎ𝑜𝑠𝑡
) (49)  

𝑉𝑒 = 𝜆𝑒 (
1 − 𝑛𝑚

1 − 𝑛ℎ𝑜𝑠𝑡
− 1) (50)  

where h and e are the potential strength parameters determined through the generalized 

Koopmans’ theorem (gKT), nm is the fractional occupancy of mth sublevel, and nhost is the fractional 

occupancy of an unperturbed host.  



 

31 

 

Vh and Ve both vanish when the target orbital’s occupancies are not changed with respect to the 

unperturbed host. Potential strength parameters are determined from Koopmans’ condition. 

Therefore, this method does not rely on any empirical parameter for predicting the polaron 

energies. This method has been shown to be able to describe polaron formation in bulk anatase 

and rutile [212], but due to relying on the perfect bulk orbital occupancies, this method has not 

been designed for modeling surface and interfaces. 

3.2 Charge correction 

To correct the error in the total energy of models due to extra charge, I will use the correction 

scheme of Komsa and Pasquarello (as outlined in Section 2.5.1.6). A more in-depth discussion on 

this correction scheme can be found in their original paper [70].  

In this work, I will extend this approach to have the possibility of handling more complicated 

cases, and I will also simplify the process of creating model charge distributions to have a 

convenient and numerically accurate solution. I will also show the cases where a posteriori 

corrections are not sufficient and a self-consistent charge correction method is necessary. A 

method for self-consistent potential correction for these models will also be presented. 

3.3 Numerical methods 

3.3.1 Geometry optimization 

In constructing any atomic model for a physical system, the first step requires the optimization of 

the geometry to find characteristic stationary point structures (e.g., equilibrium geometry, 

transition state structure, etc.) on the potential energy surface (PES). The equilibrium geometry of 

a model is considered a minimum on the PES, while the transition state is a 1st-order saddle point. 

In general, there are two common approaches to the geometry optimization problem: 

1. Direct optimization of the PES: In this approach, geometry optimization is performed by 

repositioning the atoms of the model and evaluating its energy at various points on the PES 

to estimate the characteristic point of interest. The objective function and the gradients for 

the optimization algorithms are given by the potential energy and forces, respectively. This 

approach can be easily applied to the optimization of equilibrium as well as transition states 

[213]. 
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2. ab initio molecular mechanics: In each step, the forces on the atoms are calculated, and the 

atoms are allowed to evolve (relax) according to Newton's equations of motion under these 

forces. Although this geometry optimization scheme has been designed for equilibrium 

geometry optimization (simulated annealing), it can be modified to locate the transition 

states as well [214, 215]. 

Direct optimization on the PES is the most commonly used approach for geometry optimization. 

Some of the most widely used optimization algorithms include: 

 Steepest descent: A series of energy evaluations is done in the negative gradient direction. 

Once the energy starts to increase, an approximate minimum can be found by interpolation 

between the calculated points on PES [216].  

 Conjugate gradient: In each step, a new search direction is chosen such that it lowers the 

energy while remaining at or near the minimum in the previous search direction [217]. 

 Newton-Raphson:  The PES is approximated by a local quadratic function and its minimum 

is found in the steepest descent direction. Although the PES is generally non-quadratic, 

minimization of energy on approximated PES must be done iteratively in order to converge 

to a minimum [218].  

 Direct inversion of the iterative subspace: A new geometry is constructed as a linear 

combination of previous geometries, which minimizes the size of the Newton step 

(residuals) [219].  

To find the equilibrium geometry, both the size/shape of the supercell and the positions of the 

atoms inside it must be optimized. A finite plane wave basis set is not complete with respect to 

changes in the volume, and the stress tensor calculated using the Hellmann-Feynman theorem 

differs from the ‘true’ stress. To overcome this problem, I use the Murnaghan equation of state 

[220], which relates the pressure P to the volume V and bulk modulus at zero pressure K0: 

𝑃(𝑉) =
𝐾0

𝐾0
′
[(

𝑉

𝑉0
)
−𝐾0

′

− 1] (51)  

K0’ is the derivative of the bulk modulus with respect to pressure at P=0.  



 

33 

 

In this way, the energy, stress, and pressure are calculated for different volumes using the same 

energy cutoff, and the results are fitted to the Murnaghan equation of state. Unless noted otherwise, 

0.02 eV/Å has been used as the force criterion for structural relaxation in all calculations. 

3.3.2 Locating transition states 

The study of a reaction mechanism requires finding the minimum energy path (MEP) that connects 

the reactants to the products via suitable transition states on the PES. All points on the MEP are at 

an energy minimum in all directions perpendicular to the path. The projection of the MEP onto a 

coordinate space (reaction coordinate) is commonly called the reaction path [221].3 To find the 

geometry of the transition states of a chemical reaction, we must find a geometry corresponding 

to a point on the PES that satisfies the following criteria [222]: 

1. It must be a stationary point. 

2. The force constant matrix at that point must have one and only one negative eigenvalue. 

3. It must be the highest energy point on a continuous line connecting reactants and products. 

4. It must be the lowest energy point that satisfies all three conditions above. 

The calculation of equilibrium geometries is a relatively simple process. It only requires 

minimization of the energy with respect to the ionic degrees of freedom in the system, and the 

negative of the gradient always points towards the desired solution (local minima of the PES). In 

contrast, a transition structure optimization should follow the uphill path on the PES in one 

direction and the downhill path in all other orthogonal directions. More often, the desired uphill 

direction is not known in advance and must be determined during the optimization. Therefore, 

various optimization methods have been specifically designed to find the TS. These methods can 

be broadly classified as single-ended and double-ended [213].  

Single-ended methods, e.g., the quasi-Newton method [223], start with an initial guess for the TS 

geometry and displace it towards the transition structure. Single-ended methods are much like the 

methods for finding minima of PES, except that they perform a constrained optimization and force 

the Hessian to contain a single negative eigenvalue. Double-ended methods, e.g., the string method 

                                                 

3 It must be noted that the reaction path is a static path that neglects the kinetic energy of the system and is different 

from any “real” trajectory of the atoms during a chemical reaction. 
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[224], the growing string method [225], and the nudged elastic band [226], start with the reactants 

and products and work from both sides to find the reaction path. The TS can be determined later, 

after the reaction path has been established. 

3.4.2.1 Plain elastic band method 

The Plain elastic band (PEB) is a double-ended method of locating the MEP. PEB works by 

optimizing a number of intermediate geometries (images) along the reaction path. One can simply 

formulate the search for MEP as the minimization of an objective function S in the form of the 

energy of N-1 beads connected together with N springs of natural length zero [227]: 

𝑆(𝑅1, . . , 𝑅𝑁−1) = ∑ 𝐸(𝑅𝑖)

𝑁−1

𝑖=1

+ ∑
𝑘

2
(𝑅𝑖 − 𝑅𝑖−1)

2

𝑁

𝑖=1

 (52)  

where [R1, R2….RN-1] represent a string of images between the fixed end points (R0, RN) and k is 

the spring constant. With this minimization, each image finds the lowest energy possible while 

maintaining equal spacing with neighboring images. However, the elastic bands in this method 

tend to cut corners and get pulled off the MEP by the spring forces in regions where the MEP is 

curved, and slide down towards the fixed endpoints [228].  

3.4.2.2 Nudged elastic band method 

The non-zero component of the spring force perpendicular to the path in the PEB method leads to 

corner-cutting, while the parallel component of the true force (from the interaction between atoms 

of the system) leads to the down-sliding problem [226]. These problems can be solved by 

“nudging”, which is projecting out the perpendicular component of the spring forces and the 

parallel component of the true forces. The nudged elastic band (NEB) was first introduced by Mills 

and Jónsson in a study of H2 adsorption on the Cu(110) surface [229] and was later described in 

[226]. If we have an estimate of the unit tangent to the path at each image �̂�𝑖, we can redefine the 

force on each image as the parallel component of the spring force 𝐹𝑖
||
 plus the perpendicular 

component of the true force 𝐹𝑖
⊥ as: 

𝐹𝑖 = 𝐹𝑖
⊥ + 𝐹𝑖

||
 (53)  

𝐹𝑖
⊥ = −𝛻𝐸(𝑅𝑖) + 𝛻𝐸(𝑅𝑖). �̂�𝑖 (54)  

𝐹𝑖
||

= [𝑘𝑖+1(𝑅𝑖+1 − 𝑅𝑖) − 𝑘𝑖(𝑅𝑖 − 𝑅𝑖−1)]. �̂�𝑖 (55)  
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where 𝛻𝐸(𝑅𝑖) is the gradient of the energy with respect to the atomic coordinates (R) of the image 

i. The perpendicular component of the energy gradient is obtained by subtracting out its parallel 

component. 

To estimate the tangent, the simplest method is to use the normalized line segment between the 

two images: 

�̂�𝑖 =
𝑅𝑖+1 − 𝑅𝑖−1

|𝑅𝑖+1 − 𝑅𝑖−1|
 (56)  

Or it can be better estimated by considering the relative energy of each image and its neighbors in 

the string [230]. It has been shown that in the limit of many images, the NEB will always converge 

to a MEP [231], but its efficiency highly depends on the employed optimization algorithms [232], 

whose implementation in general is not trivial [231, 233]. 

3.4.2.3 Climbing image nudged elastic band method 

The climbing image nudged elastic band (CI-NEB) [234] is a modification to the NEB method in 

which the highest energy image is driven up to the saddle point. This image does not feel the spring 

forces along the band (𝐹𝑖
||
) which are artificial forces used to maintain equal separations between 

the neighboring images. Instead, the true force in this image along the tangent is inverted. In this 

way, the image tries to maximize its energy along the band and minimize it in all other directions. 

When this image converges, it will be at the exact saddle point (transition state). 

𝐹𝑖,𝑚𝑎𝑥 = −𝛻𝐸(𝑅𝑖,𝑚𝑎𝑥) + 2𝛻𝐸(𝑅𝑖,𝑚𝑎𝑥). �̂�𝑖,𝑚𝑎𝑥 (57)  

To locate the transition states for a reaction, I use the NEB starting from a chain of images 

interpolated between the initial and final positions of the atoms in the reaction. The geometry of 

the start and end points of the reaction path is fixed, and the computational units are divided equally 

among the intermediate images to optimize their geometries and find the MEP. The CI-NEB 

method chooses the geometry with the maximum energy and tries to maximize its energy along 

the MEP. To verify that the identified transition geometries are first-order saddle points, I 

performed vibrational analysis using the finite differences method [235] to ensure the existence of 

one and only one imaginary frequency. Additionally, I optimized the ionic structure of the obtained 

transition states using the molecular dynamics method with maximum damping (which is 
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effectively just a simple steepest descent method) to ensure that the located transition states are 

actually connecting the intended local minima on the PES. 

3.4 Calculation parameters 

For all my DFT calculations, I use the Vienna Ab initio Simulation Package (VASP) ver. 5.4.4, 

which is a very popular plane-wave based package for the electronic structure calculations in solid-

state physics [236, 237] while being equally successful in chemical applications [238]. It is 

currently proprietary software but is distributed as source code. 

VASP has been written in Fortran and internally parallelized using the MPI (message passing 

interface) scheme. An OpenMP multithreaded version is also currently under development [239]. 

VASP offers multiple levels of data parallelization, including the parallelization over the k-points, 

Kohn-Sham orbitals at each k-point, and the basis set coefficients [240]. Additionally, it supports 

the use of GPU accelerators [241, 242] and has the flexibility to be tweaked for high-performance 

computations on various hardware/cluster architectures [243]. 

I used the PAW potentials supplied with the VASP package [127] for my calculations. The Ti3p 

states were explicitly included in the calculations. The default cutoff value (ENMAX), and number 

of valence electrons for the potentials used in my calculations are listed in Table 2. H.66 and H1.33 

are pseudo-hydrogens used to passivate the dangling bonds of the bottom surface atoms and to 

keep the states at the bottom surface localized [244]. 

Table 2 Default plane-wave cutoff energy and the number of valence electrons for the PAW potentials used in this study 

potential default cutoff value (eV) valence electrons 

Ti_pv 222 10 

O 400 6 

H.66 250 2/3 

H1.33 250 4/3 

C 400 4 

 

Unless otherwise stated, all the calculations have been performed using a cutoff energy for the 

planewave basis set (ENCUT) of 420 eV, and a cutoff energy for the plane wave representation of 

the augmentation charges (ENAUG) of 840 eV. 
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I used an 8×8×8 Γ-centered Monkhorst-Pack grid for Brillouin zone integration in unit cell 

calculations and only the Γ point for slab model calculations. No constraint has been put on the 

charge density symmetry, and all calculations were spin-polarized. Three-dimensional periodic 

boundary conditions were automatically applied to all the models. I used a patch provided by G. 

Kresse to modify the VASP code and increase its numerical accuracy in dealing with the charge 

of pseudo-hydrogen atoms (2/3 and 4/3) to 7 digits after the decimal separator. 

I used the PBE functional, which is a non-empirical GGA functional, in all my calculations [245]. 

As mentioned earlier, GGA-based functionals suffer from bandgap underestimation and charge 

delocalization errors. To overcome these limitations of the PBE functional, I used Lany and 

Zunger’s gap correction method [210] and polaron correction [246] for the Ti and O atoms in my 

calculations.  

I modified the VASP code to include support for the atom type- and angular momentum-dependent 

semi-empirical NLEPs, as described in [210], with a patch provided by S. Lany. This patch 

modifies the LDA+U routines in the VASP [247] to include both gap and localization corrections. 

To model the bulk materials, I created supercells consisting of 3×3×2 Bravais cells for anatase 

(216 atoms) and 2√2×2√2×4 for rutile (192 atoms). These models are shown in Figure 7. 
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a b 

Fig. 7 Ball-and-stick model representation of the bulk models for a) anatase, and b) rutile phase 

The anatase (101) surface was modeled by a slab of 4 double layers, with a (3 × 1) surface unit 

(144 atoms), and the rutile (110) surface was modeled by a slab of 5 layers with a (4 × 2) surface 

unit (240 atoms). In both slab models, the two bottom layers were fixed to the optimized bulk 

positions, and the fivefold-coordinated titanium atoms (Ti5C) and the twofold-coordinated oxygen 

atoms (O2C) at the bottom were saturated by H1.33 and H0.67 pseudo-hydrogen atoms, respectively. 

A vacuum layer of 10 Å was added to the surface. The relaxed slab models are shown in Figure 8.  
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a b 

Fig. 8 The structures of a) the anatase (101), and b) the rutile (110) slab models. Five- and sixfold-coordinated titanium (blue), 

and two- and threefold-coordinated oxygen surface atoms (red) are labeled as Ti5C, Ti6C, O2C, and O3C, respectively. Pseudo-

hydrogen atoms are white. 

It should be noted that these slabs have a small dipole moment orthogonal to the surface, 2 Debye 

for anatase and 7 Debye for rutile. Correcting for the error arising from the periodic repetition 

shifts the total energy of the perfect slabs by -0.005 eV and -0.051 eV, respectively. Since we 

cannot presently calculate the dipole correction for charged slabs in VASP, I neglect dipole 

corrections altogether. 

For locating the transition state of reactions, I used the CI-NEB method as implemented in the 

VASP Transition State Theory (VTST) tools patch [234] ver. 3.1.4 This patch also contains an 

improved tangent definition [230] as well as several optimizers that are solely based on the force 

(and not the energy), including a modified conjugate-gradient, limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) [248], and Fast Inertial Relaxation Engine (FIRE) [249]. VTST also 

replaces the damped molecular dynamics optimization method in VASP with its own optimizer 

routines.  

 

  

                                                 

4 http://theory.cm.utexas.edu/vtsttools 
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Chapter 4  

Results 

4.1 A posteriori charge correction  

Before my work, there was no user-friendly implementation available of the correction method by 

Komsa and Pasquarello. I have identified the following issues in their scheme that needed to be 

addressed to obtain consistent and reproducible results: 

The model of the extra charge in the Komsa-Pasquarello (KP) method uses a single Gaussian 

charge distribution, which may not be a suitable choice for modeling extra charge localization on 

multiple sites. As an example, Figure 9 shows the localization of the extra positive charge in an 

anatase (101) surface model with a subsurface oxygen vacancy.  

 

  

a b 

Fig. 9 a) Position of the missing subsurface oxygen atom and b) localization of the extra positive charge on the titanium atoms 

next to a subsurface oxygen vacancy in the anatase (101) surface model 

Additionally, to construct a model that resembles the extra charge distribution and its environment 

in the electronic structure calculations, several parameters need to be defined, i.e., the position of 
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the charge, the width of the Gaussian distributions, and the position of the interfaces. The choice 

of these parameters can heavily influence the accuracy of the calculated energy correction values. 

The process of obtaining the model parameters is usually quite involved, and in the case of large 

slab models, it can be very time-consuming. Judging the quality of the constructed model is also 

rather complicated. 

To have the possibility of calculating energy corrections for more complex models and routinely 

integrating it into my workflow, I extended the KP method and implemented it in a standalone 

code called SLABCC (slab charge correction) [250]. The details of SLABCC’s implementation 

are available in Appendix 1. 

4.1.1 Modeling the charge distribution 

First, we need to construct a model charge that generates a potential closely mimicking the 

potential due to the extra charge in the electronic structure calculation. Assuming our model charge 

distribution is described as the sum of Gaussian charges, we will have: 

𝜌model(𝑟) = ∑
𝑞𝑖

𝜎𝑖
3(2𝜋)3 2⁄

exp (−
(𝑟 − 𝑟𝑖)

2

2𝜎𝑖
2 )

𝑖

 (58)  

𝑄model = ∑𝑞𝑖

𝑖

 
(59)  

where qi is the charge localized in each Gaussian, σi is the width of each Gaussian charge, and ri is 

the position of the Gaussian charge centers. 

Additionally, in the calculation of the charge correction for slab models, the dielectric profile of 

our model will influence the potential generated by our model charge distribution. We can assume 

a dielectric profile in the form of Eq. (60) in the direction normal to the slab:  

𝜀(𝑧) =
𝜀2 + 𝜀1

2
+

𝜀2 − 𝜀1
2

erf(
𝑧 − 𝑧0

𝛽
) (60)  

where z0 is the interface position in the z-direction, ε1 and ε2 are dielectric tensors on either side of 

the interface, and β controls the smoothness of the transition. 
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In the KP method, the potential created by the model charge (Vmodel) is calculated by solving the 

Poisson equation, Eq. (11) for the model charge embedded in the model dielectric medium. In 

materials with large anisotropy in their dielectric tensor, using a single ε value may not be adequate 

to construct a proper model. SLABCC solves this problem by explicitly including the dielectric 

tensor as: 

𝜀 = |

𝜀11 0 0
0 𝜀22 0
0 0 𝜀33

| (61)  

In the case of slab models where the dielectric profile varies only in one direction (z), Eq. (11) can 

be written as: 

𝜕

𝜕𝑧
𝜀33(𝑧)

𝜕

𝜕𝑧
𝑉model(𝑟) + 𝜀(𝑧)𝛻2𝑉model(𝑟) = −𝜌model(𝑟) 

(62)  

(63)  

This discrete Poisson equation can be efficiently solved in Fourier space. I discretize the analytical 

model charge distribution on the same spatial grid as that given for the charge distribution by the 

electronic structure calculation. 

4.1.2 Choosing optimal model parameters 

In general, the mentioned model parameters, i.e., the positions of the center of Gaussian charges, 

the fraction of total charge in each Gaussian, the width of the Gaussian distributions, and the 

position of the interfaces in the model, are all expected to be manually defined by the user. The 

process of obtaining these parameters is usually quite involved, and evaluating the quality of the 

constructed model is rather time-consuming. These drawbacks can severely limit the practicality 

of a total energy correction code. To overcome these limitations, in SLABCC, I try to estimate 

model parameters by automatically constructing a model that generates a potential mimicking the 

potential generated by the extra charge of our electronic structure calculations (Vcalc). I use the 

mean squared error (MSE) of my model potential as an index for the goodness-of-fit of the model: 

MSE =
1

𝑁
∑(𝑉calc, 𝑖 − 𝑉model, 𝑖)

2
𝑁

𝑖=1

 (64)  

where N is the total number of grid points and Vi is the value of the potential on each grid point. 
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Ideally, our model charge distribution should produce the same potential as the electronic structure 

calculation at each grid point. This corresponds to MSE=0. Therefore, our goal is to minimize the 

MSE by changing the model parameters. The analytical calculation of the MSE derivative with 

respect to each of the parameters is not trivial. Also, numerical approximation of derivatives using 

the finite difference method, given the computational cost of MSE evaluation, is far too expensive. 

Consequently, using a derivative-free (direct) search optimization method to find the minimum of 

the MSE from the values calculated at discrete points in n-dimensional space can provide an 

efficient solution. An extensive review of the commonly used derivative-free optimization 

algorithms can be found in [251]. Technical details of the model parameter optimization in 

SLABCC are available in Appendix 1. 

4.1.3 Energy calculations for periodic and isolated model charge 

After constructing our model charge, we can easily calculate the electrostatic energy for our charge 

distribution ρmodel(r) using its electrostatic potential Vmodel from Eq. (10). For calculating the energy 

of our model charge distribution in the isolated limit, I uniformly scale the model charge medium 

(slab) to larger sizes, embedding the model charge in larger slabs, and calculate the energy of this 

new model under periodic boundary conditions. Finally, I extrapolate the obtained energies to the 

limit of the model charge embedded in an infinitely large medium (see, for example, Figure 12). 

4.1.3.1 Bulk models 

Although SLABCC was originally designed for calculating the energy correction for slab models, 

it can be easily adapted to calculate the energy correction for bulk models as well [252]. Defining 

the same value for the dielectric tensor of the regions inside and outside of the “slab” generates a 

charge model embedded in a uniform (bulk) medium. When generating charge models in bulk, 

SLABCC automatically turns off the optimization of the interface positions. This leads to faster 

convergence due to the smaller number of model parameters involved in the optimization process. 

Considering that the uniform scaling of the model charge does not change the ratio of the extra 

charge in the region of space with different dielectric constants, the extrapolation scheme used for 

the slab models can also be used for calculating the Eisolated of the bulk models. 
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4.1.3.2 Monolayer and 2D models 

I have also added the possibility of modeling the extra charge with trivariate Gaussian charge 

distributions as follows: 

𝜌model(𝑟) = ∑
𝑞𝑖

𝜎𝑖,𝑥𝜎𝑖,𝑦𝜎𝑖,𝑧(2𝜋)3 2⁄
exp (−

(𝑟𝑥 − 𝑟𝑖,𝑥)
2

2𝜎𝑖,𝑥
2 −

(𝑟𝑦 − 𝑟𝑖,𝑦)
2

2𝜎𝑖,𝑦
2 −

(𝑟𝑧 − 𝑟𝑖,𝑧)
2

2𝜎𝑖,𝑧
2 )

𝑖

 (65)  

where σi,x/y/z refer to the Gaussian width in each Cartesian direction, and ri,x/y/z are elements of the 

charge center position vectors in the x/y/z directions. This provides us with the possibility of 

modeling more complex charge distributions, which is especially important when the extra charge 

is localized near the surface or for models of the extra charge in layered or 2D models [253]. 

The linear interpolation of the energy of a model charge distribution in the isolated limit in the 

case of uniformly scaled models may not be suitable for monolayer/2D models since the 

asymptotic form is generally unknown [84], and when scaling to large sizes, this relation may not 

be trivial [254]. Noh et al. have proposed using a fifth-order polynomial for fitting [255] for these 

cases. However, in SLABCC, I have implemented an energy extrapolation method using a second-

order polynomial with an exponential term, as proposed in [85]:  

𝐸 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑑𝑒−𝑐3𝑥 (66)  

𝑑 =
𝑐1 −

𝜕𝐸𝑀

𝜕𝑥
𝑐3

 (67)  

where ci are the fitting parameters, EM is the Madelung energy, and x is the scaling factor (𝑥 =
1

𝛼
; 

α being the extrapolation ratio). Inclusion of the d term in this fitting method guarantees that the 

energy gradient is similar to the Madelung energy at the limit of isolated charge 𝛼 → 0. 

4.1.4 Potential alignment term 

The alignment term ΔV in Eq. (9) must be calculated at the position least affected by the model 

charge. In the case of a single localized Gaussian charge in an isotropic dielectric medium, this 

point is the farthest point from the charge center. As a more general solution, to calculate the V I 

use the extremum point of Vmodel in the 3D Cartesian space to also account for the effects of the 
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dielectric medium anisotropy. In most cases, if the model charge is describing the potential well 

enough, this term should be negligible.  

4.1.5 Validation 

For validating my implementation of the KP method, I calculated the energy correction values for 

the formation energies and EA of a Cl vacancy in the +1 charge state on the surface of a 3×3×2 

NaCl slab (16.98×16.98×11.32 Å) with various vacuum thicknesses along the third direction. This 

is one of the models used by Komsa and Pasquarello in their original paper [70]. The localization 

of the extra (positive) charge around the surface vacancy in a model with a vacuum thickness of 

6×lateral size is shown in Figure 10.  

 

Fig. 10 Localization of the extra charge on the surface of NaCl slab model 

I calculated the total energy correction using the SLABCC code, assuming a dielectric constant 

(ε=2.45). The planar average of the extra charge distribution and its potential for the VASP 

calculations and the SLABCC’s model are shown in Figure 11. As can be seen, the potential of 

the charge model closely follows the potential of the extra charge in the VASP calculations. 
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a b 

Fig. 11 Planar average of the a) charge distribution and b) resulting potential of the charged defect in VASP calculations and the 

SLABCC model 

For calculating the isolated energy of the charged defect (when the defect is embedded in an 

infinitely large medium), I use the extrapolation method. In each step, the Gaussian charge is 

embedded in a larger medium, and the total energy of the resulting model under periodic boundary 

conditions is calculated. In the limit of an infinitely large cell, the energy of the model will 

correspond to the energy of the isolated charge in the dielectric environment. Figure 12 shows the 

extrapolation scheme and the estimated Eisolated for this model. α is the scaling factor, which is 

defined as the ratio of the extended supercell’s side to that of the original supercell.  
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Fig. 12 Electrostatic energies of the model charges as obtained by uniformly scaling all dimensions in the supercell and their 

extrapolation to an infinitely large supercell.  

Figure 13 shows the formation energy and EA of NaCl defect slabs with various vacuum 

thicknesses. As can be seen, by adding the energy correction values estimated by the SLABCC to 

the total energies, the resulting values are independent of the vacuum size of the model. 

 

  

a b 

Fig. 13 Corrected and uncorrected a) formation energy and b) EA, of positively charged Cl vacancies on the NaCl surface for 

models with a vacuum thickness of 4-8 × lateral size 

For additional verification of my implementation, I used SLABCC in the calculation of the vertical 

ionization energy for a sub-surface oxygen vacancy in an anatase (101) surface model. A slab of 

4 double layers, with a (3 × 1) surface unit (144 atoms) and various vacuum sizes (10-30 Å) was 

used to model the surface. The location of the missing oxygen atom on the surface and the 

difference in the total charge distribution of the neutral and positively charged models are shown 
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in Figure 9. The dielectric constant of anatase, required for the total energy correction, was 

obtained from density functional perturbation theory [256] as 4.79. The details of my slab model 

and calculations have been explained in Section 3.2.3. 

Initial guesses of the SLABCC model charge parameters are graphically presented in Figure 14. I 

used three different sets of interface positions (shown by colored dashed lines) and four different 

sets of Gaussian charge positions (marked by the orange color) as the initial guesses for our charge 

models. The dielectric tensor is assumed to be isotropic inside the slab; therefore, only a single 

value (the geometric average of the tensor elements) is provided. 



50 

 

 

 

 

 

 

a b 

Fig. 14 Initial guesses for a) the position of the interfaces in the direction normal to the surface, and b) the position of the center 

of Gaussian model charges 

The final model charges generated by the SLABCC starting from these initial parameters and the 

calculated correction energies are all identical. The final positions of the Gaussian model charges 

and the interfaces are shown in Figure 15. 
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Fig. 15 The localization of the constructed model charge and the position of the model slab interfaces 

 

 

Fig. 16 Vertical ionization energies of the slab models with various vacuum thicknesses with, and without the energy correction 

for the extra charge 

Figure 16 shows the variations of the vertical ionization energies (the energy of the neutral system 

subtracted from the energy of the positively charged system) for the models with various vacuum 

thicknesses. As can be seen, adding the correction obtained from the SLABCC to the total energy 
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of the charged models makes them independent of their size. The contents of a sample SLABCC 

input file for the energy correction calculation of this model are shown in Appendix 1.  

For verification of my SLABCC implementation for monolayer models, I calculated the vertical 

ionization energy of a negatively charged h-BN model with a carbon substitution on the nitrogen 

site. A 128-atom model with ideal h-BN geometry (a = 2.49Å) was used as the reference for the 

model. I used the HSE06 hybrid functional [257] in these electronic structure calculations. I used 

6.28 for the in-plane dielectric constant and 1.83 for the dielectric constant in the direction normal 

to the surface. The localization of the extra charge is shown in Figure 17. 

 

 Fig. 17 Localization of extra negative charge around the substitution carbon in the h-BN monolayer model 

As mentioned earlier, linear interpolation of the energy of uniformly scaled models is not suitable 

for the calculation of isolated model charge energy. As it can be seen in Figure 18, the energy of 

model charges deviates from the linear trend, especially in large scaling factors. The energy of the 

model charge distribution in the isolated limit for these 2D models has been estimated using a 

second-order polynomial with an exponential term [Eqs. (66,67)]. 
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Fig. 18 Electrostatic energies of the model charges as obtained by uniformly scaling all dimensions in the supercell and their 

extrapolation to an infinitely large supercell. The red line represents a linear fitting and the dashed line shows the results of 

fitting data to Eq. (66) 

I also calculated the variations of the vertical ionization energies for h-BN monolayer models with 

various vacuum thicknesses. As can be seen in Figure 19, adding the correction obtained from the 

SLABCC to the total energy of the charged models makes them independent of their size. As the 

sign of energy correction is positive for all of these cases, the crossing of the corrected and 

uncorrected energies occurs at a very large vacuum thickness (~60 Å). 
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Fig. 19 Vertical ionization energies of the monolayer models with various vacuum thicknesses with, and without the energy 

correction for the extra charge 

It should be emphasized that the energy values for these tests are only meant to test the reliability 

of the charge correction scheme as implemented in SLABCC. It has been shown that the HSE-

type hybrid functional applied to monolayer h-BN models cannot be Koopmans-compliant while 

reproducing the band gap accurately [253]. More examples, as well as a detailed description of all 

the SLABCC input parameters can be found in its manual.  

4.1.6 Limitations and future outlook 

Currently, the execution of the SLABCC is limited to a single node, where all the processes have 

access to the same data in memory. To leverage the massively parallel computation environments, 

the code needs to be parallelized using MPI or a similar method to run on modern clusters. In order 

to fully benefit from the large number of computational cores, we need to use a parallel 

optimization algorithm in the SLABCC to evaluate the MSE of several models in parallel. This 

feature is currently under development in the NLOPT library. 

As the optimizers currently used in the SLABCC are all local optimizers, the initial values provided 

by the user need to be reasonable for convergence to the correct solution. By using a global 

optimizer algorithm instead, we can eliminate the need for an initial guess and make the process 

more user-friendly. 

Only models with orthogonal cells are currently supported by SLABCC. Additionally, in the 

current version, only the VASP data formats are supported, but this can be easily extended to 

include more file formats. 
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Finally, it should be noted that a posteriori charge correction methods in general can only 

compensate for the error in the total energy of the model due to the presence of a localized extra 

charge under periodic boundary conditions. However, the charge also affects the localized one-

electron levels, and the corresponding artifacts may have a significant impact on the results [258]. 

A self-consistent potential correction should be used instead to eliminate the effects of the extra 

charge in these cases [259]. 

4.1.7 Summary 

I implemented the method proposed by Komsa and Pasquarello for a posteriori charge correction 

of slab models under PBC in a standalone code called SLABCC. I extended the method to model 

the extra charge of QM calculations with a sum of Gaussian charges, which is necessary in models 

where the extra charge is localized on multiple atomic sites. I have also included the anisotropy of 

the dielectric tensor in the calculations, which is crucial for charge correction in monolayer and 

2D models. To have an accurate representation of the extra charge, all the model parameters 

provided by the user needed to be manually adjusted and verified. To make the code more practical 

and user-friendly, I have added an optimization routine to SLABCC that automatically finds the 

best model parameters. 

The code is freely accessible under a permissive license. The details of SLABCC and its features 

are published in the Computer Physics Communications journal [250]. We have also used 

SLABCC and verified its functionality with bulk, slab, and 2D models in our publications [252, 

253, 259].  
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4.2 Self-consistent charge correction 

A posteriori charge correction methods can only compensate for the error in the total energy of the 

model due to the presence of a localized extra charge under PBC. However, the extra charge and 

its compensating jellium also introduce artifacts in the wavefunction due to incorrect electrostatic 

potential during the SCF iterations. This also affects the localized one-electron levels, and 

depending on the model, the corresponding artifacts may have a significant impact on the obtained 

results [258]. A common symptom of this issue is the appearance of unphysical "ghost states", 

which are additional states at energies below or close to the physical valence states. In the case of 

slab models, these states can be fully or partially localized in the vacuum region. I encountered 

this during my investigation of reactions on the anatase surface (see Figure 22). In such cases, a 

self-consistent correction scheme is critically needed to eliminate the spurious effects of the extra 

charge in models with PBC. To address this issue, I contributed to the development of a self-

consistent potential correction (SCPC) method for periodic charged models and verified its 

functionality based on the a posteriori corrections with SLABCC [259].  

The SCPC method adds a corrective potential term to the KS potential Eq. (23) that is defined as 

the difference between the electrostatic potential due to the extra charge under PBC and the 

potential for the same model charge in isolation. As this correction needs to be updated in each 

iteration during the SCF cycle, it is crucial to keep the required computational cost as low as 

possible. SCPC can be added to VASP 5.4.4 using a patch, and it is also part of the official VASP 

package from version 6.2 onwards5. 

4.2.1 Charge model construction 

Unlike SLABCC, in which the extra charge is constructed from a sum of Gaussian functions, 

SCPC uses the difference between the total electronic density of the charged system (𝜌charged) and 

the neutralized defect model (𝜌reference) as its model charge instead. This procedure omits the need 

for model fitting in each iteration but may introduce some errors in the final results.  

𝜌model(𝑟) = 𝜌charged(𝑟) − 𝜌reference(𝑟) (68)  

                                                 

5 https://github.com/aradi/SCPC-Method 
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Technically, the neutralized defect model with the same geometry as the charged one should be 

used as the reference. However, in practice, it is more convenient to use a pristine model as the 

reference system instead. By using the unperturbed supercell, obtaining the reference does not 

require additional calculations, and it does not need to be updated at each geometry optimization 

step.  

 

4.2.2 Potential correction 

In SCPC, the periodic electrostatic potential (Vper) corresponding to the model charge is obtained 

from the constructed model of extra charge by solving the Poisson equation. This equation is 

solved using the DL_MG library [260]. The difference between the periodic electrostatic potential 

of the charged defect model (Vcharged) and that of the reference system (Vreference) on the supercell 

edges can be used to define the Dirichlet boundary conditions. The dielectric profile of the material 

(𝜀) is set to a homogeneous constant for bulk models and a smoothed boxcar function for slab 

models. The positions of the slab surfaces should be provided by the users. 

The potential of an isolated charge, 𝑉𝑖𝑠𝑜 is calculated using the self-consistent iterative procedure 

of Fisicaro et al. [261], which incorporates the macroscopic dielectric profile of the material in the 

calculation with open-boundary conditions: 

𝛻2𝑉𝑖𝑠𝑜(𝒓) = − [
𝛿𝜌(𝒓)

𝜀(𝒓)
+ 𝜌𝑖𝑡𝑒𝑟(𝒓)] 

(69)  

𝜌𝑖𝑡𝑒𝑟(𝒓) = 𝛻𝑙𝑛𝜀(𝒓) ∙ 𝛻𝑉𝑖𝑠𝑜(𝒓) (70)  

Here, 𝜌iter results from the spatial variation of the dielectric function. The numerical solution of 

Viso is obtained using the PSPFFT library [262] in SCPC. 

Finally, from Vper and Viso we can calculate the corrective potential Vcor, which is then added to the 

total electronic potential. 

Vcor = Viso - Vper (71)  

Alternatively, one can obtain Vcor by solving the Poisson equation for the compensating jellium 

background, using the difference between Viso and Vper at the edges of the supercell to determine 
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the Dirichlet boundary conditions. Using this approach, the Vcor can be calculated on a coarser grid 

in comparison to the iterative solution to Eqs. (69,70). 

 

4.2.3 Validation 

For testing the SCPC method, we checked the variation of the formation energy with supercell size 

for a positive chlorine vacancy, VCl
+ on the surface of a NaCl (001) slab. For this calculation, the 

slab model was constructed from a 3 × 3 × 3 (× 5.64 Å) solid model with various vacuum 

thicknesses added to it. A kinetic energy cutoff of 262.5 (356.2) eV was used for expanding the 

wave functions (charge density). Spin-polarized calculations were carried out using the -point 

approximation. The value of 2.45 was used for the macroscopic dielectric profile of the solid 

region.  

Figure 20 shows the change in formation energy of a positively charged Cl vacancy on the NaCl 

surface for models with different vacuum thicknesses, with and without corrections. As can be 

seen, despite SLABCC and SCPC being conceptually different, they are both capable of correcting 

the formation energies and making them model-size independent.  

 

Fig. 20 Formation energy of positively charged Cl vacancies on the NaCl surface for models with different vacuum thicknesses, 

without correction, with SLABCC, and with SCPC. 

Additionally, I checked the effect of SCPC on “ghost states” due to the countercharge in the 

vacuum part of a negatively charged anatase (101) slab model with an adsorbed O2 molecule on 
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the surface. In this model, the solid part consisted of three double-layers with a lateral size of 13, 

using the experimental lattice parameters. A kinetic energy cutoff of 420 eV (840) eV was applied 

to expand the wave functions (charge density). Spin-polarized calculations were carried out using 

the -point approximation. For the macroscopic dielectric constant, an average value of 6.68 was 

used. I used the optimized position of slab surfaces from SLABCC calculations to generate the 

dielectric profile for these models. 

Figure 21 shows the planar average of electrostatic potential (Hartree and ionic contribution) in 

the direction perpendicular to slab surfaces with ~10/30/50 Å of vacuum between the slabs without 

SCPC. As can be seen, there is a spurious potential well in the vacuum between the slabs, which 

attracts charge spill-out. This potential may give rise to "ghost states" (two-dimensional Rydberg 

states) in the middle of the vacuum, and in a plane-wave calculation, these states may get 

erroneously occupied. To minimize the effects of periodically repeated slabs in the study of surface 

reactions, the distance between them must be sufficiently large. Nonetheless, as can be seen, 

increasing the vacuum thickness between the slabs increases the induced dipole moment and 

deepens this potential well. 

 

Fig. 21 Variations of the plane-averaged electrostatic potential in the direction perpendicular to the surface for negatively 

charged anatase (101) slab models with an O2 molecule on the surface 
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a 

 

b 

 

c 

Fig. 22 Localization of a) the highest occupied and b,c) lowest unoccupied states, in [TiO2:O2]- model without SCPC correction 

(isosurface level 0.0002) 

Figures 22,23 show the spatial localization of the highest occupied state and the two lowest 

unoccupied ones without, and with SCPC correction, respectively. As can be seen, without the 

self-consistent correction, all these states are either partially or fully localized in the vacuum 

between the slabs. By including SCPC in the calculations, these ghost states disappear, and the 

occupied state is also fully localized on the slab itself.  
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a 

 

b 

 

c 

Fig. 23  Localization of a) the highest occupied and b,c) lowest unoccupied states, in [TiO2:O2]- model with SCPC correction 

(isosurface level 0.0002) 

Figure 24a shows the variations of the plane-averaged electrostatic potential of the model in the 

direction perpendicular to the surface with and without SCPC. A planar average of the corrective 

potential is shown in Figure 24b. As can be seen, by applying the corrective potential, the spurious 

potential well in the vacuum between the slabs is eliminated. 

The planar average of extra charge in the direction perpendicular to the surface with and without 

self-consistent potential correction is shown in Figure 25. As expected, applying SCPC mitigates 

the charge spilling issue and makes the extra charge fully localized on the slab, while a posteriori 

energy correction methods such as SLABCC cannot deal with such cases at all. 
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a b 

Fig. 24 a) Variations of the plane-averaged electrostatic potential of models with and without SCPC and b) SCPC corrective 

potential; in the direction perpendicular to the surface for negatively charged anatase (101) slab models with O2 molecules on 

the surface 

 

  

a b 

Fig. 25 Planar average of the extra charge a) without, and b) with SCPC correction 

Since the corrective potential has a cusp at the supercell boundaries, a small charge accumulation 

occurs there, which in some cases can cause numerical fluctuations in the total energy. That, in 

turn, slows down the convergence of the SCF procedure. To minimize the impact of cell 

boundaries, SCPC uses a damping region in the region near the cell boundary to minimize these 

fluctuations and speed up the convergence in SCF iterations. 
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4.2.4 Limitations and future outlook 

The spurious potential well in the vacuum between the charged slabs is more relevant to models 

with a large vacuum between the slabs. The large number of grid points in these models makes 

them computationally expensive. Additionally, the extra calculations required for SCPC and the 

limited parallel scalability of VASP can make these simulations impractical on shared 

computational resources. To overcome this issue, the parallel performance of SCPC and the 

Poisson solvers used by it must be improved. It is also possible to calculate a loosely converged 

initial guess for the charged model without SCPC and then use that guess as the starting point of 

SCPC simulations for faster turnaround. 

For modeling the slab, SCPC requires user-defined slab surface positions to generate the dielectric 

profile. Unlike SLABCC, SCPC does not optimize or verify these parameters, and improper inputs 

by the user may lead to incorrect results. To ensure the correctness of calculations, the 

effectiveness of SCPC in eliminating ghost states and the variation of calculated energies in models 

with different vacuum thicknesses must be individually verified in each case. 

The current implementation of SCPC only supports orthogonal cells with slabs perpendicular to 

the third dimension, and the contribution of the corrective potential has not yet been added to other 

quantities such as forces, which are required for geometry optimization. However, it is possible to 

rotate the slab model to be perpendicular to the third direction. Also, SCPC does not produce 

accurate results for models with localized charges near the numerical grid boundaries. However, 

this issue can be solved by shifting the center of the extra charge to the center of the simulation 

cell. 

4.2.5 Summary 

I showed that in charged slab models with a large vacuum region between the slabs, a posteriori 

charge correction is not sufficient and a self-consistent charge correction method is necessary. I 

contributed to the development of a new self-consistent potential correction (SCPC) method for 

charged models under PBC and its verification with a posteriori charge correction using SLABCC. 

In SCPC, the correction term for the KS potential is derived from the difference in electrostatic 

potential due to the extra charge under PBC and the potential for the same model charge in 

isolation. I showed that, similar to SLABCC, SCPC is also capable of making the calculated 
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energies model-size independent. Additionally, SCPC can eliminate the ghost states due to the 

spurious potential well in the vacuum between the slabs and also prevent charge spill-out. 

Our method is included in the latest version of VASP and can be added to the old versions as a 

patch. The details of SCPC and its features are published in Physical Review Letters [259]. 
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4.3 Modelling titanium dioxide surfaces 

To investigate photocatalytic reactions on the surface of titanium dioxide, we need a method that 

is capable of reproducing the bandgap and equilibrium geometry of titanium dioxide and can also 

describe the charge localization both in the bulk and on the surface of titanium dioxide models. As 

has already been discussed in Section 3.1.9, errors in the LDA and GGA functionals prevent them 

from properly describing such quantities. In this section, I will present a computationally low-cost 

method for correcting these shortcomings.  

4.3.1 Bandgap and geometry 

I used Lany and Zunger’s published gap correction NLEP values for anatase and rutile [212], 

which are ΔVO,s = +3.0 eV, ΔVO,p = −1.0 eV, ΔVTi,p = −2.2 eV, and ΔVTi,d = +1.7 eV. These values 

are chosen to reproduce the experimental results for the low-temperature optical gaps [263, 264] 

and the equilibrium geometry. 

The unit cell parameters and the calculated band gap values are listed in Table 3. Rutile has a direct 

gap at Γ while anatase has an indirect gap between X and Γ. As can be seen, by applying band gap 

correction to the PBE functional, the resulting structural parameters are minimally affected, but it 

greatly compensates for the typical underestimation of the bandgap by GGA functionals. The 

resulting  bandgaps are in good agreement with the experimental values for the low-temperature 

optical gap.  
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Table 3 Unit cell parameters and the band gap for anatase and rutile structures 

phase  a (Å) c (Å) c/a u bandgap (eV) 

anatase 

PBE + gap correction 

(this work) 
3.741 9.526 2.546 0.201 3.4 

PBE [265] 3.802 9.774 2.571 0.205 2.08 

PBE [266] 3.759 9.585 2.550 - - 

PBE [267] 3.784 9.531 2.519 - 2.12 

Experimental [263] - - - - 3.42 

Experimental [33] 3.785 9.514 2.514 0.208 - 

rutile 

PBE + gap correction 

(this work) 
4.571 2.960 0.648 0.304 3.0 

PBE [265] 4.647 2.974 0.640 0.305 1.69 

PBE [266] 4.593 2.935 0.639 - - 

PBE [267] 4.592 2.954 0.643 - 1.84 

Experimental [264] - - - - 3.06 

Experimental [33, 34] 4.594 2.959 0.644 0.305 - 

 

4.3.2 Charge localization in bulk 

A small polaron is the consequence of electron-phonon interactions, which within the Born-

Oppenheimer approximation are not taken into account when solving the electronic Schrödinger 

equation. Therefore, a polaronic state does not arise spontaneously. Small polarons can be modeled 

by inducing a local displacement in the perfect geometry of the bulk around a specific atom when 

an extra electron or hole is present. To obtain an initial guess for the local strain around the center 

of the small polarons, we can substitute one of the elements in the lattice with another element that 

has ±1 valence electrons. For example, the initial guess for the geometry of the electron polarons 

in the TiO2 lattice can be obtained by replacing one Ti with Nb/Al atom in the perfect lattice and 

subsequently relaxing the whole model. After relaxation, the host atom can be resubstituted with 

a negative/positive charge, and the system can be relaxed again. 

To apply the Lany-Zunger polaron correction, we need to calculate the orbital occupations nhost for 

the Ti3d, O2p for Eqs. (49,50) in the calculations with the band gap correction. These values 

depend on the employed pseudopotential. I calculated these values from the average of the 

occupancy matrix for all the levels in that orbital. The resulting occupations are listed in Table 5.  
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The published parameters for the polaron correction in bulk anatase are λ(Ti3d) = 4.2 eV and 

λ(O2p) = 4.8 eV [212]. I calculated the total energy correction for the charged models using 

SLABCC. The required values of the high-frequency dielectric constants were obtained from 

density functional perturbation theory as 4.79 and 5.56 for anatase and rutile, respectively. 

The resulting Kohn-Sham level energies, with respect to the band edges, for the polarons formed 

by adding an extra charge to the N-electron system in my models, are shown in Table 4. KS(N+1) 

refers to the energy level of the electron polaron with respect to the conduction band edge, and 

KS(N-1) to that of the hole polaron with respect to the valence band edge. Removing the extra 

electron or hole, while keeping the geometry fixed, leads to a neutralized system with N electrons, 

and the resulting gap state is denoted KS(N). These are compared to SCF, which is the 

difference between the total energies of the (N±1) and the (N)-electron systems, calculated self-

consistently at the equilibrium geometry of the former, and related also to the band edges. As can 

be seen, the published-values satisfy the gKT in anatase to a good approximation, but not for the 

electron-polaron in rutile.  

Table 4 Vertical transitions (in eV) between the defect level and the band edge as calculated from the position of the Kohn-Sham 

levels (KS) and from total energy differences (SCF), using the  parameters published in Ref. [212]. 

phase polaron type KS(N±1) KS(N) SCF 

anatase 

electron-polaron -0.23 -0.24 -0.27 

hole-polaron +1.25 +1.28 +1.35 

rutile electron-polaron -1.01 -0.65 -0.91 

This implies that the potential strength , which restores the linear behavior of E(n) must 

be different for this phase. These results appear to be reasonable considering that the ab initio U-

values also differ in the two modifications [58]. It should be noted that the success of HSE-type 

hybrid functionals is connected to the correct description of electronic screening [268], which is 

also different in anatase and rutile. 

It has been shown [246] that, if  exceeds a certain critical value, the geometry of the polaron is 

rather insensitive to the correction strength, but the charge addition energy changes continuously. 

Using this observation, the optimal  parameter can be determined by varying it at a fixed 

le
R Ti3d( )
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geometry and checking the fulfillment of the gKT. Figure 26 shows the change in the energy 

eigenvalues and electron addition energies for hole polarons in bulk rutile with changes in 

correction strength. Based on this procedure, I have selected the optimum value for electron 

polarons in rutile as  = 3.7 eV.  

 

Fig. 26 Variations of energy eigenvalues and electron addition energies for hole polarons in bulk rutile with changes in 

correction strength  

The stability of a polaron can be quantified by using its self-trapping energy, which is the energy 

difference between the polaron and a delocalized charge at the band edge state. The latter is 

calculated by adding the extra charge and relaxing the system with no initial distortion.  

Using the optimized  parameters, I calculated the vertical ionization energy of electron polarons 

with respect to the conduction band edge in bulk anatase and rutile (at the optimized geometry) to 

be -0.2 eV and -0.6 eV, respectively, and the vertical ionization energy of the hole polaron with 

respect to the valence band edge in anatase to be +1.2 eV. These results are in agreement with 

HSE06 calculations [269], which found it to be -0.5 eV for electron polarons in rutile and +1.3 eV 

for hole polarons in anatase. My calculations also reproduce the self-trapping energies reported by 

Lany [212]: +0.1 eV and -0.3 eV for the electron-polaron in anatase and rutile, respectively, and -

0.6 eV for the hole-polaron in anatase. 

4.3.3 Charge localization on surface 

For surface calculations, I have determined the nhost values for the slabs first, using only the NLEPs 

for gap correction. For fully coordinated surface and subsurface atoms, the change with respect to 

the bulk calculations was negligible; however, the deviation was significant for the 

le
R Ti3d( )
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undercoordinated surface atoms. The occupation values are listed in Table 5. I adjusted my 

correction according to that for undercoordinated atoms while using the optimal  values from the 

bulk calculations. 

Table 5 Average orbital occupation for the surface atoms of the anatase (101) and rutile (110) models 

 bulk surface 

 O(2p) Ti(3d) O2C (2p) Ti5C (3d) 

anatase 0.615 0.170 0.598 0.179 

rutile 0.622 0.169 0.600 0.173 

Next, I localized electron and hole polarons at various atomic sites in my slab models and evaluated 

the fulfillment of the gKT. As shown in Tables 6 and 7, the gKT remains fulfilled at atoms with 

bulk-like environments within 0.1 eV.  

Table 6 Kohn-Sham level positions and charge addition energies with respect to the conduction band edge (in eV), for electron-

polarons localized at different positions in the rutile (110) slab. Values are first given for uniform  values optimized for bulk. 

The result after coordination-dependent adjustments is given in parenthesis. 

polaron position in the rutile (110) slab KS(N) SCF 

Ti5C on surface -1.25 (-1.23) -1.13 (-1.23) 

Ti6C subsurface, layer 1 -1.17 (-1.17) -1.09 (-1.09) 

Ti6C subsurface, layer 2 -0.83 (-0.83) -0.79 (-0.79) 

However, the deviation between KS(N) and SCF increases above 0.1 eV for the 

undercoordinated surface atoms (except for Ti5C on anatase (101)). I attribute this to the change in 

the electronic screening near the surface, and have reoptimized  values of undercoordinated 

atoms, to satisfy the gKT also for polarons localized on them. The KS and SCF values using 

reoptimized the   are shown in parentheses in Tables 7. This procedure did not have an effect on 

the fulfillment of the gKT at other positions. The coordination-dependent  parameters are listed 

in Table 8.6 

                                                 

6 I have not changed the parameters for the hole correction in rutile, since I was not able to localize hole polarons 

there. 
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Table 7 Kohn-Sham level positions and charge addition energies with respect to the conduction band edge for the electron-

polaron, and to the valence band edge for the hole-polaron (in eV), with the polaron localized on different atoms in the anatase 

(101) slab. Values are first given for uniform  values [212]. The result after coordination-dependent adjustments is given in 

parenthesis. 

polaron position in the anatase (101) slab KS(N) SCF 

electron 
Ti5C on surface -1.59 (-1.59) -1.57 (-1.57) 

Ti6C on surface & Ti6C subsurface -1.21 (-1.21) -1.20 (-1.21) 

hole 
O2C on surface +2.65 (+2.65) +2.54 (+2.65) 

O3C subsurface +2.15 (+2.15) +2.21 (+2.21) 

Table 8 Optimized, coordination-dependent -parameters of the polaron correction for the rutile (110) and anatase (101) slabs. 

polaron atom-coordination (orbital) rutile (110) anatase (101) 

electron 
Ti5C(3d) 4.0 4.2 

Ti6C(3d) 3.7 4.2 

hole 
O2C(2p) 4.8 5.1 

O3C(2p) 4.8 4.8 

 

Next, I tested the surface-adapted Lany-Zunger polaron correction method. Table 9 lists the self-

trapping energies calculated by my optimized parameters. The results comply with the 

experimentally known situation [52, 58]: electron polarons can be localized in rutile at almost any 

Ti atom, but are slightly preferred energetically at a Ti6C site immediately below a Ti5C site. In the 

anatase (101) slab, electron-polarons could only be localized on the surface, but even there, they 

are less strongly bound than in rutile.  

Table 9 Self-trapping energy of polarons at the surface of the rutile (110) and anatase (101) slabs. 

polaron position rutile (110) anatase (101) 

electron 

Ti5C on surface -0.3 -0.3 

Ti6C on surface – -0.1 

Ti6C subsurface, layer 1 -0.4 – 

hole 
O2C on surface – -1.1 

O3C on surface – -0.7 

The vertical ionization energies of the surface electron-polarons can be deduced from the STS 

(scanning tunneling spectroscopy) measurements of Ref. [58], which provide 0.7±0.1 eV on the 

rutile (110) surface and 1.0±0.1 eV on the anatase (101) surface. In the case of rutile, the STS peak 

also appears if measured away from a surface oxygen vacancy, so it can be assumed that it arises 
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due to free electron polarons. My value for the most stable position of the free polaron (see Table 

6, Ti6C subsurface 1) with the optimized parameters for rutile (in parentheses) is 1.1 eV, i.e., about 

0.4 eV higher than the experimental value. In the case of anatase, the STS peak only appears if 

measured above an oxygen vacancy. 

I have, therefore, also calculated the vertical transition energies (ΔKS = εKS - εCB) of a surface 

oxygen vacancy in both models, removing an O2C atom. On the rutile (110) surface, I find the two 

electrons of the vacancy to be the most stable in two polaron states at Ti6C subsurface 1 sites (Figure 

8), symmetric to the oxygen vacancy, in agreement with HSE calculations [270]. The one-electron 

level, computed in my five-layer model is 1.47 eV below the conduction band edge, somewhat 

deeper than the 1.22 eV obtained in a four-layer calculation by HSE [270]. On the anatase (101) 

surface, the electrons are retained by the surface vacancy, giving rise to two levels in the four 

double-layer slab at 1.76 and 2.11 eV below the conduction band edge, again deeper than the HSE 

values from a three double-layer calculation, 1.20 and 1.39 eV, respectively [57]. (The much 

smaller splitting between the two states in the latter indicates that a GGA calculation cannot mimic 

the non-local exchange even with the applied corrections.) Also, similar to the HSE calculation 

[57], I find that a subsurface oxygen vacancy loses one electron into a polaron state on a surface 

Ti5C site, giving rise to a level at 1.48 eV energy. It appears likely that this less bound polaron 

gives rise to the observed STS peak at 1.0 eV on the anatase (101) surface. The deviation from the 

experiment is then the same as in the case of the rutile (110) surface. This analysis shows that the 

applied corrections allow for a qualitatively correct picture of the polarons in both modifications 

of TiO2 but the quantitative accuracy is somewhat limited. 

While the Lany-Zunger polaron correction method can successfully describe the charge 

localization on pure titanium dioxide models, adapting it for models with impurity atoms (dopants) 

where more than one type of atomic orbital contributes to the band state is not trivial. In TiO2, very 

often the DFT+U method or hybrid functionals are used for polaron studies, irrespective of their 

fulfillment of the gKT. Such functionals provide a higher degree of localization than plain GGA, 

but not necessarily the correct amount. The standard HSE06 functional (0.25,0.20) satisfies the 

gKT and reproduces the 0K single-particle gap for anatase [271]. Therefore, we will use it for the 

study of charge localization in the presence of niobium dopants.  
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Starting from a model with lattice parameters corresponding to the HSE06 result for an ideal bulk 

crystal (a = 3.755 Å, c = 9.561 Å), if we introduce an extra electron by substituting Nb on the 

sixfold-coordinated surface Ti6C site, (Nb is more stable on Ti6C than on a Ti5C site by 0.3 eV 

[272]), we obtain three different localized solutions. In the first case, similar to the pure TiO2 case, 

the electron is trapped in the dangling bond of a surface Ti5C site (Figure 27a). In the second case, 

the electron stays on Nb forming essentially an effective mass-like (EMT) donor state [53] (Figure 

27b). These two cases are similar in energy. However, the third case where an electron is spread 

out in a (001) plane, around a subsurface Ti6C atom (Figure 27c) is about 0.3 eV lower in energy 

than the first two. Since this state is not centered on the Nb atom but on an adjacent Ti, it is a 

polaron bound by the ionized donor. These results show that unlike in bulk, an electron can be 

self-trapped on the anatase (101) surface in various forms, with the 2D-localized state being the 

most favorable. 

   

a b c 

Fig. 27 Localization of the extra electron of a Nb donor (at a surface Ti6C site) a) trapped at a surface Ti5C atom, b) centered on 

the dopant, and c) in a 2D polaron state  

The model sizes allowed by a HSE calculation are insufficient to assess the size of the 2D-localized 

state. Therefore, we have used the PBE+U functional (U =3.9 eV has proven to be capable of 

capturing the proper localization in this case [58, 273]) on two larger 960-atom and 1920-atom 

anatase (101) slabs, to show that these localized states resemble the scanning tunneling microscopy 

(STM) observations [58]. 960-atom and 1920-atom models were constructed from 8×2 and 16×2 

surface unit cells with 5 double-layers using unit cell parameters listed in Table 3. No pseudo-

hydrogen termination was used in these models. In the 960-atom model, the bottom 2 double-layers 

were kept frozen, but in 1920-atom model, all atoms were allowed to relax. 
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Substitution of a Nb donor on a surface Ti6C site in the 960-atom slab gives rise to a 2D-localized 

state in the (001) plane, centered on a subsurface Ti atom. The state extends to the bulk region of 

the plane. A similar state was found by Selçuk and Selloni [273] in a study where hydrogen 

absorption onto O2C provided the excess electron. Using first-principles molecular dynamics 

simulations, they also observed the motion of this polaron between different (001) planes at 400K 

within picoseconds, so it is quite mobile. The simulated STM image (at -1.0 V bias and 1.05 Å tip 

distance) of the 960-atom slab with the medium-size 2D polaron state is shown in Figure 28. As 

can be seen, on the one hand, the STM view does not show the full size of the polaron, since it is 

subsurface, and on the other, at its greatest extent, the state extends beyond the cell boundary. 

Therefore, we have created a similar 2D polaron in the large slab, placing the Nb atom at the 

bottom surface, and then cleaved the upper half of the slab for STM simulation. The STM 

simulation was performed in constant-height mode (-1.0 V bias and 1.27 Å tip distance) using 

P4VASP7, which is based on the simplification of the Tersoff-Hamann approach [274, 275] by 

Selloni et al. [276]. 

Our simulated STM images (Figure 28) and the observed sizes in the two slabs are in excellent 

agreement with the those reported by Setvin et al. [58]. Since the 2D polaron state is localized 

entirely in the large (1920-atom) slab, we could calculate the position of its electronic level. After 

potential alignment to the pristine system, we obtain it at 33 meV below the conduction band. 

 
 

a b 

Fig. 28 Simulated STM images of 2D polarons in a cleaved a) medium-sized and b) large slab model. 

The good agreement with the measured 40 meV for the “large polaron” observed by ARPES on 

the (001) surface after creating vacancies [49], suggests that the 2D state we find may exist 

                                                 

7 https://www.vasp.at/py4vasp/ 
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independent of the Nb dopant or of the (101) surface. Indeed, our HSE06 calculations in the 96-

atom bulk supercell (2√22√21 multiple of the Bravais cell, with 2×2×2 Monkhorst-Pack 

Brillouin-zone sampling) confirm this. With the help of an Nb dopant, a 2D state can be created in 

the (001) plane, which persists even after the Nb is replaced by Ti and the system is allowed to 

relax again. 

 

Fig. 29 Localization of an excess electron in a 2D polaron state in a bulk anatase model. 

 

4.3.4 Summary 

I applied the band-gap and polaron correction methods of Lany and Zunger to slab models and 

showed that the original method is not accurate on the surface due to the different screening 

environment. I showed that by making the atom- and angular-momentum-dependent parameters 

of the Lany–Zunger polaron correction also coordination-dependent, it is possible to correctly 

describe charge trapping in small polaron states on the anatase (101) and rutile (110) surfaces while 

keeping the total computational cost low. Our results also show that the “large polaron” in anatase 

is actually of medium size and can be obtained in a static calculation. These states are two-

dimensional in the (001) plane and can get trapped at the (101) surface.   
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4.4 Photocatalytic CO oxidation on the anatase (101) 

surface 

I have used my developed scheme [277] to investigate the possibility of having a fully cyclic photo-

assisted CO oxidation reaction on the anatase (101) surface. The idea of a hole-mediated CO 

oxidation was suggested on the basis of calculations with an uncorrected GGA functional [13], so 

I first repeated them using my improved functional. In addition, I considered the restoration of the 

starting surface by O2 molecules, which act as electron scavengers after the photo-excitation. I will 

show that the whole reaction sequence is energetically feasible, so a photocatalytic CO oxidation 

cycle on the anatase (101) surface in the presence of molecular oxygen is possible. 

The process of heterogeneous photocatalysis can be decomposed into a series of chemical reactions 

on the surface of the photocatalyst, following the electron-hole pair generation by photoexcitation. 

I will not consider here the mechanism of separating the electron and the hole, and I will decouple 

the reactions involving them by considering independent models with a negative and a positive 

charge, respectively: 

2[TiO2] + e- + h+→ [TiO2]+ + [TiO2]- (72)  

I will investigate first the interaction of CO in the gas phase with the positively charged anatase 

(101) surface [TiO2]+, then the electron scavenging reaction of O2 with the negatively charged 

anatase (101) surface [TiO2]–, and finally the restoration of the neutral surface. 

4.4.1 Adsorption of CO on the positively charged surface 

[TiO2]+ + CO → [TiO2:CO]+ (73)  

The interaction of the CO molecule with the anatase (101) surface has been studied experimentally 

using infrared reflection and absorption spectroscopy [10, 278], and theoretically with DFT using 

the PBE functional [13, 278]. For the positively charged surface, I found the most stable adsorption 

configuration to be the case when the carbon atom of CO binds to an undercoordinated surface 

titanium atom (Ti5C…C-O as shown in Figure 31b), in agreement with the experimental data. The 

calculated adsorption energy of -0.5 eV is in good agreement with the value obtained by an 

uncorrected PBE functional, -0.45 eV [13]. 
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4.4.2 Oxidation of CO on the positively charged surface 

[TiO2:CO]+ → [TiO2:VO+CO2]+ (74)          

The next step is the reaction of the adsorbed CO with a neighboring undercoordinated oxygen 

atom on the surface (O2C). As found in Ref. [13], the bond of this O2C with its Ti6C neighbor may 

break up, and a CO2 unit can be formed, bonded to a Ti6C atom (Figure 31c). This configuration 

can be considered as chemically adsorbed CO2 on the surface of anatase (101), next to a surface 

oxygen vacancy. I found the energy barrier for this reaction to be +0.5 eV, with a net gain in the 

total energy at the end of the reaction to be -0.6 eV. In comparison, the corresponding energies 

reported with the uncorrected PBE functional were +0.4 eV and -1.6 eV, respectively [13]. While 

the barriers are comparable, the net energy gain is much lower after the correction, due to the 

delocalization error of the PBE functional which is especially prominent in the charge distribution 

of the positively charged models which include an oxygen vacancy. For example, the localization 

of the positive charge (difference between the charge distribution of the positively charged model 

and the neutralized model with the same geometry) for the [TiO2:VO+CO2]+ model with PBE and 

PBE + band-gap, and polaron corrections has been shown in Figure 30. 

  

a b 

Fig. 30 Localization of the positive charge in [TiO2:VO+CO2]+ models with a) PBE and b) PBE + band-gap, and polaron 

corrections (isosurface level 0.001) 

4.4.3 Desorption of CO2 from the positively charged surface 

[TiO2:VO+CO2]+ → [TiO2:VO]+ + CO2 (75)  

After the formation of CO2 on the anatase surface, the desorption process leaves an oxygen 

vacancy at the O2C site. I found the required energy for desorption to be +0.7 eV. (The calculated 
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energy with PBE functional was reported to be +0.4 eV [13]) NEB calculations (as well as earlier 

molecular dynamics simulations [13]) show a negligible barrier for dissociation. The ball-and-

stick model representation of the reaction steps involved in the oxidation of CO on the surface and 

desorption of CO2 is shown in Figure 31. 

 

a 

 

b 

 

c 

 

d 

Fig. 31 Ball-and-stick model representation of the stable atomic configurations in CO oxidation over the positive anatase (101) 

surface. From left to right (a-d): [TiO2]+ + CO, [TiO2:CO]+, [TiO2:VO:CO2]+, [TiO2:VO]+ + CO2 

 

Fig. 32 Schematic energy diagram for the oxidation of CO on the positively charged anatase (101) surface 

The schematic energy diagram for the reaction of CO with the positively charged anatase (101) 

surface Eqs. (73-75) is shown in Figure 32. As can be seen, the total energy balance is negative 

(the process is exothermic), and the energy released by the absorption can surmount the barrier for 

forming [TiO2:VO+CO2]+. The reaction heat released during that amply covers the dissociation 

energy of CO2. Although some of the absorption and reaction energy may be dissipated, the whole 

reaction sequence can be expected to occur with a high likelihood at room temperature. Next, we 

consider electron scavenging by O2 molecules. 

4.4.4 Adsorption of O2 on the negatively charged surface 

[TiO2]
–
+ O2 →[TiO2:O2]

 –
 (76)  
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Using charge scavengers can prevent electron-hole recombination, increase the carrier lifetime, 

and enhance the photocatalytic activity. Molecular oxygen is a widely used electron scavenger for 

photocatalytic oxidation reactions, which, on the other hand, generate active oxygen species [279]. 

It has also been shown that the presence of excess electrons is essential to O2 adsorption on TiO2 

[280], and the presence of O2 gas is necessary for photo-assisted CO oxidation on the anatase (101) 

surface [10]. 

In agreement with the previous studies [281], I found that in the most stable configuration of 

adsorbed O2 on the negatively charged anatase (101) surface, both oxygen atoms are bonded to a 

Ti5C. This configuration is shown in Figure 33. The adsorption energy is 1.2 eV, in good agreement 

with the 1.0 eV reported based on calculations with the PBE0 hybrid functional [281]. 

 

 

Fig. 33 Ball-and-stick model representation of the most stable configuration for the O2 molecule adsorbed on the negatively 

charged anatase (101) surface model 

4.4.5 O2
–
 surface diffusion and annihilation of VO

+
  

It can be expected that the negatively charged O2 molecule will diffuse along the MEP on the 

surface to annihilate the positively charged surface vacancy. 

[TiO2:VO]+ + [TiO2:O2]- →[TiO2:O] (77)  

I found the activation energy for the O2 diffusion on the negatively charged anatase surface to be 

0.4 eV. This transition state directly connects the two most stable configurations (Ti5C..O-O) 

adjacent to each other on the anatase (101) surface. 

The reaction of O2 with the neighboring VO results in an oxygen adatom, bonded to a twofold-

coordinated surface oxygen (O2C…O). This reaction was also found to be barrierless. This process 
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for the surface reconstruction in conjunction with the charge neutralization releases ~2.3 eV in 

total. This energy was calculated from the difference in energy of finite-sized models 

corresponding to the following reaction:  

[TiO2:VO]+ + [TiO2:O2]- →[TiO2:O] + [TiO2] (78)  

As the NLEPs are implemented in VASP based on the simplified DFT+U approach introduced by 

Dudarev et al. [282], applying the correction to atoms does change the total energy of the model. 

The models of the reactants and products used for the energy calculation of Eq. (78) (as a result of 

surface reconstruction) have different numbers of O2C atoms, and therefore the difference in their 

energy due to this inconsistency must be accounted for. Hence, I used the energy of a pristine 

surface with NLEP correction removed from one of its surface O2C atoms as the reference for the 

second product of Eq. (78). 

4.4.6 O surface diffusion and O2 formation on the neutral surface 

The neutral oxygen adatom, created in the last step [Eq. (77)], can also diffuse on the surface and 

react with other similar oxygen adatoms, forming an adsorbed oxygen molecule.  

2[TiO2:O] → [TiO2:O2] (79)  

There are multiple locally stable configurations to be considered for the diffusion path of an 

oxygen atom on the neutral anatase (101) surface. To ensure the stability and uniqueness of the 

obtained geometries, I have optimized the geometries using a much tighter global break condition 

for the electronic SC-loop (10-7 eV) and for the ionic relaxation loop (10-4 eV/Å). I could identify 

9 stationary points for the oxygen adatom on the neutral slab surface. The energies of these 

configurations relative to the most stable one (TiOO-1) are listed in Table 10, and the 

corresponding geometries are shown in Figure 34.  
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Table 10 Relative energy of various configurations for an oxygen adatom on anatase (101) surface with respect to the most stable 

geometry 

Configuration Relative energy (eV) 

TiOO-1 0 

TiOO-2 +0.39 

TiOO-3 +0.47 

TiOO-4 +0.65 

TiOO-5 +0.74 

TiOO-6 +0.78 

TiOO-7 +0.83 

TiOO-8 +1.22 

TiOO-9 +1.75 
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TiOO-1 TiOO-2 TiOO-3 

   

TiOO-4 TiOO-5 TiOO-6 

   

TiOO-7 TiOO-8 TiOO-9 

Fig. 34 Ball-and-stick model representation of the stable configurations of the single oxygen adatom on the anatase (101) surface 

from top view. The oxygen adatom is marked yellow. 

I used the CI-NEB method to locate the possible transition states and identify the MEPs connecting 

these configurations. I propose an MEP for the diffusion of an oxygen adatom from the TiOO-1 to 

an equivalent position on the adjacent atom on the surface following the TiOO-1 → TiOO-7 → 

TiOO-3 → TiOO-2 path, as shown in Figure 35. Due to the symmetric nature of the surface, the 

rest of the diffusion path follows the same configurations on the equivalent neighboring surface 

atoms but in the reverse order. 
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Fig. 35 Minimum energy path for diffusion of a single oxygen atom on the anatase (101) surface. All energies are relative to 

TiOO-1 geometry. 

Assuming perfectly adiabatic conditions, diffusion of an atom from TiOO-1 to an equivalent 

position on the adjacent atom on the surface requires no extra energy. Following this path, the 

maximum energy barrier for each of the diffusion steps is calculated to be ~0.9 eV (TiOO-1 → 

TiOO-7). There are other steps that release energy during the diffusion process along this path, 

and the formation of an O2 molecule from two oxygen adatoms at the adjacent local minima 

(TiOO-1) releases ~0.9 eV in total, which may compensate for the required energy for oxygen 

diffusion on the surface.  

An exhaustive search for the transition states of a reaction involving multiple chemisorbed atoms 

on the surface is a complicated task. The PES for these reactions usually has a high degree of 

freedom, and numerous configurations may have close energy or near-zero energy derivatives with 

respect to the geometry changes. In the case of O2 formation on the neutral anatase (101) surface, 

it is possible to encounter surface restoration and desorption while searching for the MEP. The CI-

NEB method uses force projection in order to direct the optimizers towards MEP and TS. In 

situations where the calculated forces are not very accurate (far from or close to the minimum), 

the optimizers may not always be successful. I found an energy barrier for the formation of O2 

molecules on a neutral anatase (101) surface with +1.3 eV energy relative to the isolated O adatoms 

on adjacent TiOO-1 sites. My findings set an upper bound on the required energy for this reaction, 

but other undiscovered paths with different (lower energy) transition states may also be present, 

and a systematic search is needed to ensure this TS corresponds to the MEP. Figure 36 shows the 

geometry of this TS (Figure 36b) and two other configurations along the reaction path (Figure 

36a,c) for the O2 formation on the neutral anatase (101) surface. The reaction path following this 
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TS involves breaking a bond between an oxygen adatom and an O3C atom on the surface, followed 

by bond formation between two oxygen adatoms. 

   

a b c 

Fig. 36 Ball-and-stick model representation of configurations along the reaction path for O2 formation on the natural anatase 

(101) surface: a) along the path towards separate O adatoms, b) TS, and c) along the path towards O2 

The geometry of the most stable configuration for an O2 molecule on the neutral anatase (101) 

surface is shown in Figure 37. The orientation of an O2 molecule in this geometry differs from that 

of most stable configuration for an O2 molecule on a negatively charged anatase (101) surface 

(Figure 33). 

 

Fig. 37 Ball-and-stick model representation of the most stable configuration for the O2 molecule adsorbed on the neutral anatase 

(101) surface model 

4.4.7 Desorption of O2 from the neutral surface 

Finally, the resulting O2 from Eq. (79) can desorb from the surface: 

[TiO2:O2] → [TiO2] + O2 (80)  

which requires 0.4 eV of energy, and leaves a pristine surface behind. The schematic energy 

diagram for the reaction of oxygen atoms on the uncharged anatase (101) surface and its 

desorption, Eqs. (79,80) is shown in Figure 38. 
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Fig. 38 Schematic energy diagram for the formation of the O2 molecule on the uncharged anatase (101) surface and its 

subsequent desorption 

4.4.8 Overall reaction 

Combining all the steps above in Eqs. (72-80), we will have: 

[TiO2]+ CO + O2 + e- + h+→ [TiO2] + CO2 + ½O2 (81)  

This reaction is compatible with the experimental observations that have found the existence of 

both ultraviolet radiation and oxygen gas to be essential for the oxidation of CO on anatase (101) 

surfaces. The surface of the catalyst is reconstructed at the end of this reaction, and considering all 

the proposed reaction steps, the energy required for each fundamental step was found to be 

sufficiently small, implying a plausible mechanism for photocatalytic oxidation of CO over the 

anatase (101) surface.  

4.4.9 Summary 

Using the developed methods for modeling anatase (101) surfaces and corrections for charged 

models under periodic boundary conditions, I investigated the possibility of a complete catalytic 

cycle for the oxidation of CO over the anatase (101) surface. In addition to already published 

reports that have shown that this reaction creates an oxygen vacancy on the photocatalyst surface, 

I proposed a mechanism to eliminate the surface oxygen vacancies and the positive charge by 

including electron-scavenging oxygen molecules in the gas phase. I investigated the diffusion path 

for oxygen adatoms on the anatase (101) surfaces, the formation of oxygen molecules, and their 

subsequent desorption. 
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The calculated energies are consistent with the available theoretical reports using hybrid 

functionals. Additionally, the required energy for each of the fundamental steps in the proposed 

reaction path is sufficiently small, which can be compensated for by the energy gain during the 

surface vacancy annihilation, O2 formation, and subsequent desorption. This implies that it is a 

plausible mechanism for photocatalytic oxidation of CO over the anatase (101) surfaces. 

 

  



86 

 

  



 

87 

 

Chapter 5 Summary and outlook 

My implementation of the Komsa-Pasquarello charge correction scheme simplifies the process of 

calculating the energy correction [250]. I extended the method to handle mediums with anisotropic 

dielectric tensors as well as cases where the extra charge is localized at multiple sites [252, 253]. 

I discovered ghost states while investigating surface reactions using negatively charged slab 

models and contributed to the development of a self-consistent correction method for these models 

[259]. 

I showed that it is possible to mitigate common shortcomings of GGA-based functionals and fulfill 

the gKT for the charges localized both on the surface and in the bulk models of TiO2 by making 

the atom- and angular-momentum-dependent parameters of the Lany-Zunger polaron-correction 

also coordination-dependent [277]. This method can provide a qualitatively correct picture of the 

polarons in both anatase and rutile. I also encountered a 2D electron polaron in anatase, which 

could explain the experimental results [283]. 

I used the developed methods to investigate the photocatalytic CO oxidation on the anatase (101) 

surface. The obtained results are in good agreement with the available experimental data as well 

as the results obtained from more advanced (and computationally much more expensive) 

approximations. I proposed a mechanism for eliminating the surface oxygen vacancies by 

including electron-scavenging oxygen molecules in the gas phase, which makes it possible to have 

a complete catalytic cycle for the oxidation of CO over the anatase (101) surface. 

In future works, I plan to improve the performance of my charge correction code SLABCC, 

simplify the process, and reduce the required user intervention. I will also systematically 

investigate the possible reaction paths for the formation of O2 on the anatase (101) surface. Our 

current implementation of the self-consistent potential correction is computationally too expensive 

for large-scale studies. The parallel performance of SCPC must be improved for use in these 

studies. The contribution of the corrective potential should be added to other quantities such as 

forces, which are required for geometry optimization. 
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Appendix 1 SLABCC 

A1.1 Implementation 

To calculate the total energy correction due to the extra charge under periodic boundary conditions, 

I implemented the charge correction scheme proposed by Komsa and Pasquarello [70] in a 

standalone code named SLABCC [250]. This code is written in C++ using the Armadillo linear 

algebra library [284]. Armadillo is a template-based library designed to have a syntax similar to 

MATLAB/Octave and can automatically use OpenMP multi-threading to speed up matrix 

operations through integration with Intel MKL or OpenBLAS. 

A1.2 Flowchart 

Figure 39 shows a simplified flowchart of the SLABCC code. Various stages of the calculations 

have been marked and the relevant steps in the calculation of correction terms in Eq. (9) are 

highlighted. 
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Fig. 39 Simplified flowchart of the SLABCC code. 
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A1.3 Optimization of the model parameters 

In the case of the models with multiple charges, we also need to define the fraction of the charge 

in each Gaussian, qi in Eq. (58), while applying the constraint on the total charge of the model Eq. 

(59). Therefore, we are left with 5nc+1 (nc=number of Gaussian charges in the model) parameters 

to optimize. In some cases, to reduce the number of parameters and improve the performance of 

optimization, it is desirable to have the possibility of optimizing only a subset of the model 

parameters while keeping the rest fixed.  

To have the flexibility to efficiently tackle a wide range of models with various numbers of 

variables, I integrated the Constrained Optimization BY Linear Approximations (COBYLA) 

[285], Bound Optimization BY Quadratic Approximation (BOBYQA) [286], and S.G. Johnson's 

implementation of the Subplex (subspace-searching simplex) (SBPLX) [287] algorithms as 

implemented in the NLOPT library [288] for minimizing the MSE in the SLABCC. COBYLA is 

an alternative to the well-known simplex8 reflection method of Nelder and Mead [289] but 

additionally, it uses the trust region framework [290], and supports arbitrary nonlinear inequality, 

and equality constraints. COBYLA employs the function values at the vertices of a simplex to 

approximate the objective function with a linear multivariate interpolation. In contrast to the 

common methods based on two-level factorial designs, the simplex contains the minimum number 

of points required to approximate the first-order variations, which decreases the overall 

computational cost. COBYLA also ensures that the simplex does not collapse into a lower-

dimensional hyperplane. Details of the algorithm can be found in [291]. Unlike COBYLA, the 

BOBYQA algorithm constructs quadratic models to solve the optimization problem. SBPLX is a 

variant of Nelder-Mead that uses Nelder-Mead on a sequence of subspaces.  

All three algorithms support bound constraints to define the minimum and maximum values that 

a model variable can take. However, not all support nonlinear inequality constraints. To enforce 

total charge conservation in the case of generating a model with multiple Gaussian charges, I have 

added a quadratic penalty to the MSE based on the difference between the total charge of the model 

and the target value from the input files. 

                                                 

8 A simplex in n-dimensions is a convex hull of n+1 points. 
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Figure 40 shows the convergence behavior of various optimization algorithms in two different 

models. Figure 40a shows the convergence of MSE (and equivalently model parameters) in 

constructing a model charge for a slab with a single Gaussian. The convergence of the optimizers 

for a bulk model with two Gaussian charges is shown in Figure 40b. In each plot, all three 

optimizers start from the same initial conditions and converge to the same MSE value. However, 

for the sake of clarity, the lines are plotted with a vertical offset. As can be seen from these two 

examples, the performance of the optimizers, i.e., the number of iterations before convergence, 

depends on the problem they are working on. In each optimization step, the charge distribution 

and the dielectric profile need to be recalculated with the new parameters, and the resulting Poisson 

equation needs to be solved for the evaluation of the model’s MSE. Therefore, the performance of 

the optimizers directly influences the total runtime of SLABCC. By default, SLABCC will use the 

BOBYQA algorithm for the optimization process, but users can change the optimization algorithm 

in the input file. 

  

a b 

Fig. 40 Change in the MSE of the model in each iteration for a) a single Gaussian charge on a slab model and b) two Gaussian 

charges in a bulk model 

 

A1.4 Performance optimizations and internal checks 

Depending on the number of model parameters, the initial guess provided by the user, the 

optimization algorithm, and its convergence tolerance, the process of finding optimal model 

parameters may require tens or hundreds of iterations. To speed up the process, it is possible in 

SLABCC to optimize the model parameters on a coarser grid than the original input files. 
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However, to obtain accurate results, all the energy calculations are performed on the same (finer) 

grid size. 

In the case of highly localized charges and/or interpolation to very large model sizes, to limit the 

effect of discretization error on the calculated energies, I have implemented a grid refining scheme 

that checks the total charge of the model on the grid and, if the error is larger than a predefined 

threshold, regenerates the same model charge on a finer grid. In this case, I also interpolate the 

reference potential onto the fine grid for MSE calculations. 

I have also implemented several internal checks in SLABCC to ensure the validity of the results. 

I check for large changes in the model parameters after the optimization, the significant non-

linearity of the model energy during the Eisolated extrapolation process, and the significant 

delocalization of the extra charge. The code can also output several diagnostic files from each part 

of its calculation, e.g. differences in the charge distribution and potential of input files, model 

charge distribution in CHGCAR format, potential generated by the model charge in LOCPOT 

format, generated dielectric profile along the normal axis to the surface, as well as the planar 

average of these files along each axis. These files can be used for manual checking of the 

correctness of the SLABCC and its development. 

A1.5 Parallel scaling 

Parallel scaling of SLABCC ver. 0.3.3 constructing a model with a 170×170×240 grid size, for a 

slab normal to the 3rd dimension on a 2-socket Intel Xeon E5-2660 v3 (2×10 cores in total) machine 

(Haswell architecture) is shown in Figure 41. To prevent non-local data access, I ensured that in 

parallel regions of the code, all data is allocated and accessed by the threads pinned to the same 

NUMA domain. The code is linked to the Intel MKL for BLAS operations. 
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a b 

Fig. 41 a) iteration time and b) speedup of the SLABCC in strong scaling on a single node across two NUMA9 domains with 

scatter binding. The solid black line corresponds to ideal scaling. 

Most of the time in my SLABCC code is spent in the Poisson solver. I tried two parallelization 

schemes in the 3D Poisson solver to utilize all the cores of the machine. The red line in Figure 41b 

shows the speedup when using the threaded MKL for solving each of the 240×240 matrix 

equations in the direction normal to the slab surface. The blue line shows the speedup when using 

OpenMP for solving multiple equations in parallel, each on a single thread. As the matrices are 

fairly small, using more threads for solving them does not improve the performance, and using 

multiple threads to solve multiple equations in parallel is a better approach with lower 

computational overhead. Due to a large part of my code being memory-bound and also a possible 

load imbalance rooted in Armadillo’s adaptive solver implementation [292], there is a deviation 

from the ideal speedup (black line).  

A1.6 Distribution 

I have published the full source code of SLABCC, including build configurations (makefile) and 

a detailed manual, under a permissive license (BSD 2-Clause) on GitHub.10 To increase the 

accessibility of SLABCC, the codebase is also mirrored on Codeberg11, which is built on a fully 

open-source collaborative version control system (Gitea/Forgejo). I use automatic builds and 

                                                 

9 Non-uniform memory access 
10 https://github.com/MFTabriz/slabcc 
11 https://codeberg.org/meisam/slabcc 
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integration tests on Continuous Integration (CI) for quality assurance. An extensive test set and 

expected results are also provided at Zenodo.12 

A1.7 Sample input 

Sample SLABCC input file for energy correction calculation using a model with two localized 

Gaussian charges. Lines starting with # are treated as comments. 

 

# PATH TO THE VASP FILES 

CHGCAR_neutral = ../01-neutral/CHGCAR 

LOCPOT_neutral = ../01-neutral/LOCPOT 

CHGCAR_charged = ../02-positive/CHGCAR 

LOCPOT_charged = ../02-positive/LOCPOT 

# CENTER OF THE LOCALIZED GAUSSIAN CHARGES 

charge_position = 0.22573  0.70587  0.33316; 0.54513  0.66851  0.33321 

# DIELECTRIC CONSTANT INSIDE THE SLAB 

diel_in = 4.79 

# DIRECTION NORMAL TO THE SURFACE 

normal_direction = b 

# POSITION OF THE SLAB INTERFACES 

interfaces = 0.16  0.71 

  

                                                 

12 https://doi.org/10.5281/zenodo.1323559 
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